From f30c3c87873ae04b11d00d3e6dfb90cd09889ba8 Mon Sep 17 00:00:00 2001 From: klassents Date: Wed, 16 Oct 2024 08:06:04 +0300 Subject: [PATCH] =?UTF-8?q?=D0=9E=D0=B1=D0=BD=D0=BE=D0=B2=D0=B8=D1=82?= =?UTF-8?q?=D1=8C=20README.md?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/README.md b/README.md index 07f6690..72f70e0 100644 --- a/README.md +++ b/README.md @@ -11,8 +11,8 @@ ## Особенности использования платы Elbear Ace-Uno в ArduinoIDE ### Цифровые выводы -На плате Elbear Ace-Uno пользователю доступны встроенные светодиод и кнопка. Для их использования можно воспользоваться макросами LED_BUILTIN и BTN_BUILTIN, передавая их в качестве аргументов функции вместо номера цифрового вывода. -В отличие от стандартного функционала Arduino, на плате Elbear Ace-Uno невозможно управлять притяжками цифрового вывода, настроенного на вход, с помощью функции digitalWrite(). Для включения притяжки к питанию необходимо воспользоваться функцией pinMode(PinNumber, INPUT_PULLUP). Для изменения состояния цифровых выводов помимо стандартной функции digitalWrite() доступна функция digitalToggle(uint32_t PinNumber). +На плате Elbear Ace-Uno пользователю доступны встроенные светодиод и кнопка. Для их использования можно воспользоваться макросами `LED_BUILTIN` и `BTN_BUILTIN`, передавая их в качестве аргументов функции вместо номера цифрового вывода. +В отличие от стандартного функционала Arduino, на плате Elbear Ace-Uno невозможно управлять притяжками цифрового вывода, настроенного на вход, с помощью функции `digitalWrite()`. Для включения притяжки к питанию необходимо воспользоваться функцией `pinMode(PinNumber, INPUT_PULLUP)`. Для изменения состояния цифровых выводов помимо стандартной функции `digitalWrite()` доступна функция `digitalToggle(uint32_t PinNumber)`. ### Аналоговые выводы ADC @@ -22,23 +22,23 @@ ADC D10 не может быть использован, если работает SPI. ### Прерывания -На плате Elbear Ace-Uno доступно 6 выводов, позволяющих использовать прерывания с помощью функции attachInterrupt(). Это выводы D2, D3, D4, D5, D8, D9. Дополнительно доступно прерывание по встроенной кнопке при использовании макроса BTN_BUILTIN. +На плате Elbear Ace-Uno доступно 6 выводов, позволяющих использовать прерывания с помощью функции `attachInterrupt()`. Это выводы D2, D3, D4, D5, D8, D9. Дополнительно доступно прерывание по встроенной кнопке при использовании макроса `BTN_BUILTIN`. В микроконтроллере MIK32 предусмотрен всего один вектор прерывания. Когда срабатывает прерывание от любого источника, общая функция-обработчик последовательно проверяет все возможные источники и, при необходимости, вызывает соответствующие обработчики конкретных модулей. Поэтому важно, чтобы функции, вызываемые при прерываниях, выполняли минимально необходимый объем работы и обеспечивали как можно более быстрое завершение обработки. Это позволит избежать задержек и снизит риск пропуска последующих прерываний. -Общая функция-обработчик прерываний располагается в RAM памяти. Это позволяет устраненить задержки, связанных с кэшированием памяти при работе из FLASH памяти. Обработчики прерываний, назначаемые цифровым выводам с помощью функции attachInterrupt(), а так же обработчик прерывания для функции tone() так же располагаются в памяти RAM. +Общая функция-обработчик прерываний располагается в RAM памяти. Это позволяет устраненить задержки, связанных с кэшированием памяти при работе из FLASH памяти. Обработчики прерываний, назначаемые цифровым выводам с помощью функции `attachInterrupt()`, а так же обработчик прерывания для функции `tone()` так же располагаются в памяти RAM. ### Serial -Для работы доступно два последовательных интерфейса. Первый интерфейс выведен на выводы D0, D1, для работы с ним используется экземпляр класса под названием Serial. Второй интерфейс доступен на выводах D7, D8, используемый экземпляр класса - Serial1. +Для работы доступно два последовательных интерфейса. Нулевой интерфейс выведен на выводы D0, D1, для работы с ним используется экземпляр класса под названием `Serial`. Первый интерфейс доступен на выводах D7, D8, используемый экземпляр класса - `Serial1`. Доступны следующие настройки режима работы каждого интерфейса: длина данных - 7 или 8 бит; четность - нет, четное, нечетное; стоп бит - 1 или 2 бита. ### Предупреждения об ошибках -Если в скетче используется первый последовательный интерфейс Serial, при возникновении ошибок при использовании какой-либо функции из пакета в порт может передаваться сообщение об этой ошибке с пояснением. Например, если в функцию будет передан некорректный номер цифрвого вывода, предупреждение об этом появится в подключенном com порту. -По умолчанию вывод предупреждений включен. Если интерфейс Serial используется для коммуникации с другим устройством, вывод предупреждений можно отключить. Для этого в самом начале функции setup() необходимо вызвать макрос `DISABLE_ERROR_MESSAGES();`. Вывод предупреждений можно включить обратно, вызвав макрос `ENABLE_ERROR_MESSAGES();` в любом месте программы. +Если в скетче используется интерфейс `Serial`, при возникновении ошибок при использовании какой-либо функции из пакета в порт может передаваться сообщение об этой ошибке с пояснением. Например, если в функцию будет передан некорректный номер цифрвого вывода, предупреждение об этом появится в подключенном com порте. +По умолчанию вывод предупреждений включен. Если интерфейс `Serial` используется для коммуникации с другим устройством, вывод предупреждений можно отключить. Для этого в самом начале функции `setup()` необходимо вызвать макрос `DISABLE_ERROR_MESSAGES();`. Вывод предупреждений можно включить обратно, вызвав макрос `ENABLE_ERROR_MESSAGES();` в любом месте программы. ### Библиотеки, входящие в состав пакета Входящие в состав пакета библиотеки используют периферию микроконтроллера MIK32 и адаптированы для работы с ним. |Библиотека|Описание|Заметки| |---------|---------|------| -|[SPI](https://docs.arduino.cc/language-reference/en/functions/communication/SPI/)|Библиотека для работы с интерфейсом SPI| Для работы используется встроенный SPI1. Доступные делители частот - SPI_CLOCK_DIV4, SPI_CLOCK_DIV8, SPI_CLOCK_DIV16, SPI_CLOCK_DIV32, SPI_CLOCK_DIV64, SPI_CLOCK_DIV128,SPI_CLOCK_DIV256, обеспечивают частоту работы от 125 кГц до 8 МГц. Скорость работы по умолчанию - 4 МГц. Для задания режима и скорости работы рекомендуется использовать функцию SPISettings(), а не отдельные соответствующие функции.| -|[Wire](https://docs.arduino.cc/language-reference/en/functions/communication/Wire/)|Библиотека для работы с интерфейсом I2C|Для работы используется встроенный I2C1. Доступные частоты работы интерфейса: 100 кГц (WIRE_FREQ_100K), 400 кГц (WIRE_FREQ_400K), 1000 кГц (WIRE_FREQ_1000K). Скорость работы по умолчанию - 100 кГц. В режиме работы в качестве ведомого устройства функции, заданные через onReceive() и onRequest(), выполняются в прерывании.| +|[SPI](https://docs.arduino.cc/language-reference/en/functions/communication/SPI/)|Библиотека для работы с интерфейсом SPI| Для работы используется встроенный SPI1. Доступные делители частот - `SPI_CLOCK_DIV4`, `SPI_CLOCK_DIV8`, `SPI_CLOCK_DIV16`, `SPI_CLOCK_DIV32`, `SPI_CLOCK_DIV64`, `SPI_CLOCK_DIV128`, `SPI_CLOCK_DIV256`, обеспечивают частоту работы от 125 кГц до 8 МГц. Скорость работы по умолчанию - 4 МГц. Для задания режима и скорости работы рекомендуется использовать функцию `SPISettings()`, а не соответствующие отдельные функции.| +|[Wire](https://docs.arduino.cc/language-reference/en/functions/communication/Wire/)|Библиотека для работы с интерфейсом I2C|Для работы используется встроенный I2C1. Доступные частоты работы интерфейса: 100 кГц (`WIRE_FREQ_100K`), 400 кГц (`WIRE_FREQ_400K`), 1000 кГц (`WIRE_FREQ_1000K`). Скорость работы по умолчанию - 100 кГц. В режиме работы в качестве ведомого устройства функции, заданные через onReceive() и onRequest(), выполняются в прерывании.| |[SoftwareSerial](https://docs.aСrduino.cc/learn/built-in-libraries/software-serial/)|Библиотека, реализующая программный последовательный интерфейс.|Доступные скорости работы - от 300 до 57600 бод. Для отправки данных (TX) можно использовать любой цифровой вывод. Для приема данных (RX) можно использовать только выводы, поддерживающие прерывания. Обработчик прерывания и связанные с ним функции располагаются в памяти RAM.| |[EEPROM](https://docs.arduino.cc/learn/built-in-libraries/eeprom/)|Библиотека для работы с памятью EEPROM| Для использования доступно 1024 байта встроенной EEPROM памяти. Для корректной работы библиотеки обязательно вызывать функцию EEPROM.begin() перед началом работы с памятью.| |[Servo](https://docs.arduino.cc/libraries/servo/)|Библиотека для работы с сервоприводом| Любой цифровой вывод может использоваться для управления сервоприводом|