добавлена библиотека neoPixels

This commit is contained in:
klassents 2024-10-14 15:13:04 +07:00
parent 978661626c
commit c0a5927145
8 changed files with 890 additions and 0 deletions

View File

@ -0,0 +1,165 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

View File

@ -0,0 +1,2 @@
## NeoPixel - это библиотека адресного светодиода WS2812 для Амура (МК от Микрон) в ArduinoIDE

View File

@ -0,0 +1,42 @@
#include <NeoPixel.h>
#define PIN 2
#define NUMPIXELS 8
NeoPixel pixels(NUMPIXELS, PIN);
uint8_t red = 0xff;
uint8_t green = 0x00;
uint8_t blue = 0x00;
uint8_t white = 0x00;
void setup() {
// init pin for led control
pixels.begin();
}
void loop() {
// clear pixels colors
pixels.clear();
// set new color and show it
for(int i=0; i<NUMPIXELS; i++) {
pixels.setPixelColor(i, pixels.Color(red, green, blue));
pixels.show();
}
delay(1000);
// update color to set
if (white == 0xff) {
red = 0xff;
green = blue = white = 0x00;
}else if (red == 0xff) {
green = 0xff;
red = blue = 0x00;
}else if (green == 0xff) {
blue = 0xff;
red = green = 0x00;
}else if (blue == 0xff) {
white = 0xff;
red = green = blue = 0xff;
}
}

View File

@ -0,0 +1,57 @@
#include <NeoPixel.h>
#define PIN 2
#define NUMPIXELS 8
NeoPixel pixels(NUMPIXELS, PIN);
void setup() {
// init Serial and pin for led control
Serial.begin(9600);
pixels.begin();
Serial.println("pixels.begin");
delay(1000);
// clear pixels and show
pixels.clear();
pixels.show();
Serial.println("pixels.clear");
delay(1000);
}
void loop() {
// sequentially set a new pixel color and show it
for(int i=0; i<NUMPIXELS; i++) {
pixels.setPixelColor(i, pixels.Color(0xff, 0x00, 0x00));
pixels.show();
}
Serial.println("pixels.Color red");
delay(1000);
for(int i=0; i<NUMPIXELS; i++) {
pixels.setPixelColor(i, pixels.Color(0x00, 0xff, 0x00));
pixels.show();
}
Serial.println("pixels.Color green");
delay(1000);
for(int i=0; i<NUMPIXELS; i++) {
pixels.setPixelColor(i, pixels.Color(0x00, 0x00, 0xff));
pixels.show();
}
Serial.println("pixels.Color blue");
delay(1000);
for(int i=0; i<NUMPIXELS; i++) {
pixels.setPixelColor(i, pixels.Color(0xff, 0xff, 0xff));
pixels.show();
}
Serial.println("pixels.Color white");
delay(1000);
// clear leds
pixels.clear();
pixels.show();
Serial.println("pixels.clear");
delay(1000);
}

View File

@ -0,0 +1,72 @@
#######################################
# Syntax Coloring Map For NeoPixel
#######################################
# Class
#######################################
NeoPixel KEYWORD1
#######################################
# Methods and Functions
#######################################
begin KEYWORD2
show KEYWORD2
setPin KEYWORD2
setPixelColor KEYWORD2
fill KEYWORD2
setBrightness KEYWORD2
clear KEYWORD2
updateLength KEYWORD2
updateType KEYWORD2
canShow KEYWORD2
getPixels KEYWORD2
getBrightness KEYWORD2
getPin KEYWORD2
numPixels KEYWORD2
getPixelColor KEYWORD2
sine8 KEYWORD2
gamma8 KEYWORD2
Color KEYWORD2
ColorHSV KEYWORD2
gamma32 KEYWORD2
#######################################
# Constants
#######################################
NEO_COLMASK LITERAL1
NEO_SPDMASK LITERAL1
NEO_KHZ800 LITERAL1
NEO_KHZ400 LITERAL1
NEO_RGB LITERAL1
NEO_RBG LITERAL1
NEO_GRB LITERAL1
NEO_GBR LITERAL1
NEO_BRG LITERAL1
NEO_BGR LITERAL1
NEO_WRGB LITERAL1
NEO_WRBG LITERAL1
NEO_WGRB LITERAL1
NEO_WGBR LITERAL1
NEO_WBRG LITERAL1
NEO_WBGR LITERAL1
NEO_RWGB LITERAL1
NEO_RWBG LITERAL1
NEO_RGWB LITERAL1
NEO_RGBW LITERAL1
NEO_RBWG LITERAL1
NEO_RBGW LITERAL1
NEO_GWRB LITERAL1
NEO_GWBR LITERAL1
NEO_GRWB LITERAL1
NEO_GRBW LITERAL1
NEO_GBWR LITERAL1
NEO_GBRW LITERAL1
NEO_BWRG LITERAL1
NEO_BWGR LITERAL1
NEO_BRWG LITERAL1
NEO_BRGW LITERAL1
NEO_BGWR LITERAL1
NEO_BGRW LITERAL1

View File

@ -0,0 +1,9 @@
name=NeoPixel
version=0.0.1
author=Adafruit
maintainer=Ogneyar <ogneyar@hutoryanin.ru>
sentence=Arduino library for controlling single-wire-based LED pixels and strip.
paragraph=This library can manage tapes with WS2812 address LEDs - up to 60 pieces.
category=Display
url=https://gitflic.ru/project/ogneyar/neopixel_amura
architectures=MIK32_Amur

View File

@ -0,0 +1,366 @@
#include "NeoPixel.h"
NeoPixel::NeoPixel(uint16_t n, int16_t p, neoPixelType t)
: begun(false), brightness(0), pixels(NULL), endTime(0) {
updateType(t);
updateLength(n);
setPin(p);
}
NeoPixel::NeoPixel()
: is800KHz(true), begun(false), numLEDs(0), numBytes(0), pin(-1), brightness(0),
pixels(NULL), rOffset(1), gOffset(0), bOffset(2), wOffset(1), endTime(0) {
}
NeoPixel::~NeoPixel() {
free(pixels);
if (pin >= 0)
pinMode(pin, INPUT);
}
void NeoPixel::begin(void) {
if (pin >= 0) {
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
}
begun = true;
}
void NeoPixel::updateLength(uint16_t n) {
free(pixels); // Free existing data (if any)
// Allocate new data -- note: ALL PIXELS ARE CLEARED
numBytes = n * ((wOffset == rOffset) ? 3 : 4);
if ((pixels = (uint8_t *)malloc(numBytes))) {
memset(pixels, 0, numBytes);
numLEDs = n;
} else {
numLEDs = numBytes = 0;
}
}
void NeoPixel::updateType(neoPixelType t) {
bool oldThreeBytesPerPixel = (wOffset == rOffset); // false if RGBW
wOffset = (t >> 6) & 0b11; // See notes in header file
rOffset = (t >> 4) & 0b11; // regarding R/G/B/W offsets
gOffset = (t >> 2) & 0b11;
bOffset = t & 0b11;
is800KHz = (t < 256); // 400 KHz flag is 1<<8
if (pixels) {
bool newThreeBytesPerPixel = (wOffset == rOffset);
if (newThreeBytesPerPixel != oldThreeBytesPerPixel)
updateLength(numLEDs);
}
}
static void __attribute__((noinline, section(".ram_text"))) mik32Show(GPIO_TypeDef* m_port, uint32_t m_pin, uint8_t* pixels, uint32_t numBytes, bool is800KHz) {
// not support 400khz
if (!is800KHz) return;
volatile uint32_t* set = &m_port->SET;
volatile uint32_t* clr = &m_port->CLEAR;
uint8_t* ptr = pixels;
uint8_t* end = ptr + numBytes;
uint8_t p = *ptr++;
uint8_t bitMask = 0x80;
noInterrupts();
while (1) {
if (p & bitMask) { // ONE
// High 800ns - 25,6 tick
*set = m_pin;
__asm volatile (
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop;"
);
// Low 450ns - 14,4 tick
*clr = m_pin;
__asm volatile (
"nop; nop; nop; nop; nop;"
);
} else { // ZERO
// High 400ns - 12,8 tick
*set = m_pin;
__asm volatile (
"nop; nop; nop; nop; nop; nop;"
);
// Low 850ns - 27,2 tick
*clr = m_pin;
__asm volatile (
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop;"
);
}
if (bitMask >>= 1) {
// Move on to the next pixel
}
else {
if (ptr >= end) {
break;
}
p = *ptr++;
bitMask = 0x80;
}
}
interrupts();
}
void NeoPixel::show(void) {
if (!pixels)
return;
while (!canShow())
;
mik32Show(gpioPort, gpioPin, pixels, numBytes, is800KHz);
endTime = micros(); // Save EOD time for latch on next call
}
void NeoPixel::setPin(int16_t p) {
if (begun && (pin >= 0))
pinMode(pin, INPUT); // Disable existing out pin
pin = p;
if (begun) {
pinMode(p, OUTPUT);
digitalWrite(p, LOW);
}
gpioPort = digitalPinToPort(pin);
gpioPin = digitalPinToBitMask(pin);
}
void NeoPixel::setPixelColor(uint16_t n, uint8_t r, uint8_t g,
uint8_t b) {
if (n < numLEDs) {
if (brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
}
uint8_t *p;
if (wOffset == rOffset) { // Is an RGB-type strip
p = &pixels[n * 3]; // 3 bytes per pixel
} else { // Is a WRGB-type strip
p = &pixels[n * 4]; // 4 bytes per pixel
p[wOffset] = 0; // But only R,G,B passed -- set W to 0
}
p[rOffset] = r; // R,G,B always stored
p[gOffset] = g;
p[bOffset] = b;
}
}
void NeoPixel::setPixelColor(uint16_t n, uint8_t r, uint8_t g,
uint8_t b, uint8_t w) {
if (n < numLEDs) {
if (brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
w = (w * brightness) >> 8;
}
uint8_t *p;
if (wOffset == rOffset) { // Is an RGB-type strip
p = &pixels[n * 3]; // 3 bytes per pixel (ignore W)
} else { // Is a WRGB-type strip
p = &pixels[n * 4]; // 4 bytes per pixel
p[wOffset] = w; // Store W
}
p[rOffset] = r; // Store R,G,B
p[gOffset] = g;
p[bOffset] = b;
}
}
void NeoPixel::setPixelColor(uint16_t n, uint32_t c) {
if (n < numLEDs) {
uint8_t *p, r = (uint8_t)(c >> 16), g = (uint8_t)(c >> 8), b = (uint8_t)c;
if (brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
}
if (wOffset == rOffset) {
p = &pixels[n * 3];
} else {
p = &pixels[n * 4];
uint8_t w = (uint8_t)(c >> 24);
p[wOffset] = brightness ? ((w * brightness) >> 8) : w;
}
p[rOffset] = r;
p[gOffset] = g;
p[bOffset] = b;
}
}
void NeoPixel::fill(uint32_t c, uint16_t first, uint16_t count) {
uint16_t i, end;
if (first >= numLEDs) {
return; // If first LED is past end of strip, nothing to do
}
// Calculate the index ONE AFTER the last pixel to fill
if (count == 0) {
// Fill to end of strip
end = numLEDs;
} else {
// Ensure that the loop won't go past the last pixel
end = first + count;
if (end > numLEDs)
end = numLEDs;
}
for (i = first; i < end; i++) {
this->setPixelColor(i, c);
}
}
uint32_t NeoPixel::ColorHSV(uint16_t hue, uint8_t sat, uint8_t val) {
uint8_t r, g, b;
hue = (hue * 1530L + 32768) / 65536;
if (hue < 510) { // Red to Green-1
b = 0;
if (hue < 255) { // Red to Yellow-1
r = 255;
g = hue; // g = 0 to 254
} else { // Yellow to Green-1
r = 510 - hue; // r = 255 to 1
g = 255;
}
} else if (hue < 1020) { // Green to Blue-1
r = 0;
if (hue < 765) { // Green to Cyan-1
g = 255;
b = hue - 510; // b = 0 to 254
} else { // Cyan to Blue-1
g = 1020 - hue; // g = 255 to 1
b = 255;
}
} else if (hue < 1530) { // Blue to Red-1
g = 0;
if (hue < 1275) { // Blue to Magenta-1
r = hue - 1020; // r = 0 to 254
b = 255;
} else { // Magenta to Red-1
r = 255;
b = 1530 - hue; // b = 255 to 1
}
} else { // Last 0.5 Red (quicker than % operator)
r = 255;
g = b = 0;
}
// Apply saturation and value to R,G,B, pack into 32-bit result:
uint32_t v1 = 1 + val; // 1 to 256; allows >>8 instead of /255
uint16_t s1 = 1 + sat; // 1 to 256; same reason
uint8_t s2 = 255 - sat; // 255 to 0
return ((((((r * s1) >> 8) + s2) * v1) & 0xff00) << 8) |
(((((g * s1) >> 8) + s2) * v1) & 0xff00) |
(((((b * s1) >> 8) + s2) * v1) >> 8);
}
uint32_t NeoPixel::getPixelColor(uint16_t n) const {
if (n >= numLEDs)
return 0; // Out of bounds, return no color.
uint8_t *p;
if (wOffset == rOffset) { // Is RGB-type device
p = &pixels[n * 3];
if (brightness) {
return (((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
(((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
((uint32_t)(p[bOffset] << 8) / brightness);
} else {
// No brightness adjustment has been made -- return 'raw' color
return ((uint32_t)p[rOffset] << 16) | ((uint32_t)p[gOffset] << 8) |
(uint32_t)p[bOffset];
}
} else { // Is RGBW-type device
p = &pixels[n * 4];
if (brightness) { // Return scaled color
return (((uint32_t)(p[wOffset] << 8) / brightness) << 24) |
(((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
(((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
((uint32_t)(p[bOffset] << 8) / brightness);
} else { // Return raw color
return ((uint32_t)p[wOffset] << 24) | ((uint32_t)p[rOffset] << 16) |
((uint32_t)p[gOffset] << 8) | (uint32_t)p[bOffset];
}
}
}
void NeoPixel::setBrightness(uint8_t b) {
uint8_t newBrightness = b + 1;
if (newBrightness != brightness) {
uint8_t c, *ptr = pixels,
oldBrightness = brightness - 1; // De-wrap old brightness value
uint16_t scale;
if (oldBrightness == 0)
scale = 0; // Avoid /0
else if (b == 255)
scale = 65535 / oldBrightness;
else
scale = (((uint16_t)newBrightness << 8) - 1) / oldBrightness;
for (uint16_t i = 0; i < numBytes; i++) {
c = *ptr;
*ptr++ = (c * scale) >> 8;
}
brightness = newBrightness;
}
}
uint8_t NeoPixel::getBrightness(void) const { return brightness - 1; }
void NeoPixel::clear(void) { memset(pixels, 0, numBytes); }
uint32_t NeoPixel::gamma32(uint32_t x) {
uint8_t *y = (uint8_t *)&x;
for (uint8_t i = 0; i < 4; i++)
y[i] = gamma8(y[i]);
return x; // Packed 32-bit return
}
void NeoPixel::rainbow(uint16_t first_hue, int8_t reps,
uint8_t saturation, uint8_t brightness, bool gammify) {
for (uint16_t i=0; i<numLEDs; i++) {
uint16_t hue = first_hue + (i * reps * 65536) / numLEDs;
uint32_t color = ColorHSV(hue, saturation, brightness);
if (gammify) color = gamma32(color);
setPixelColor(i, color);
}
}
neoPixelType NeoPixel::str2order(const char *v) {
int8_t r = 0, g = 0, b = 0, w = -1;
if (v) {
char c;
for (uint8_t i=0; ((c = tolower(v[i]))); i++) {
if (c == 'r') r = i;
else if (c == 'g') g = i;
else if (c == 'b') b = i;
else if (c == 'w') w = i;
}
r &= 3;
}
if (w < 0) w = r; // If 'w' not specified, duplicate r bits
return (w << 6) | (r << 4) | ((g & 3) << 2) | (b & 3);
}

View File

@ -0,0 +1,177 @@
#ifndef NEOPIXEL_H
#define NEOPIXEL_H
#include <Arduino.h>
// RGB NeoPixel permutations; white and red offsets are always same
// Offset: W R G B
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R
// RGBW NeoPixel permutations; all 4 offsets are distinct
// Offset: W R G B
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) ///< Transmit as W,R,G,B
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) ///< Transmit as W,R,B,G
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) ///< Transmit as W,G,R,B
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) ///< Transmit as W,G,B,R
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) ///< Transmit as W,B,R,G
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) ///< Transmit as W,B,G,R
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) ///< Transmit as R,W,G,B
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) ///< Transmit as R,W,B,G
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) ///< Transmit as R,G,W,B
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B,W
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) ///< Transmit as R,B,W,G
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G,W
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) ///< Transmit as G,W,R,B
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) ///< Transmit as G,W,B,R
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) ///< Transmit as G,R,W,B
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B,W
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,W,R
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R,W
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) ///< Transmit as B,W,R,G
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) ///< Transmit as B,W,G,R
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) ///< Transmit as B,R,W,G
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G,W
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,W,R
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R,W
#define NEO_KHZ400 0x0100 ///< 400 KHz data transmission
#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
typedef uint16_t neoPixelType; ///< 3rd arg to NeoPixel constructor
static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170,
173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211,
213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240,
241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254,
254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251,
250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232,
230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198,
196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155,
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109,
106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65,
62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29,
27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6,
5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11,
12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37,
40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121,
124};
static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3,
3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17,
17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 34, 35,
36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81,
82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 99, 100, 102,
103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 119, 120, 122, 124, 125,
127, 129, 130, 132, 134, 136, 137, 139, 141, 143, 145, 146, 148, 150, 152,
154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182,
184, 186, 188, 191, 193, 195, 197, 199, 202, 204, 206, 209, 211, 213, 215,
218, 220, 223, 225, 227, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252,
255};
class NeoPixel {
public:
// Constructor: number of LEDs, pin number, LED type
NeoPixel(uint16_t n, int16_t pin = 6,
neoPixelType type = NEO_GRB + NEO_KHZ800);
NeoPixel(void);
~NeoPixel();
void begin(void);
void show(void);
void setPin(int16_t p);
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b);
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
void setPixelColor(uint16_t n, uint32_t c);
void fill(uint32_t c = 0, uint16_t first = 0, uint16_t count = 0);
void setBrightness(uint8_t);
void clear(void);
void updateLength(uint16_t n);
void updateType(neoPixelType t);
bool canShow(void) {
uint32_t now = micros();
if (endTime > now) {
endTime = now;
}
return (now - endTime) >= 300L;
}
uint8_t *getPixels(void) const { return pixels; };
uint8_t getBrightness(void) const;
int16_t getPin(void) const { return pin; };
uint16_t numPixels(void) const { return numLEDs; }
uint32_t getPixelColor(uint16_t n) const;
static uint8_t sine8(uint8_t x) {
return pgm_read_byte(&_NeoPixelSineTable[x]); // 0-255 in, 0-255 out
}
static uint8_t gamma8(uint8_t x) {
return pgm_read_byte(&_NeoPixelGammaTable[x]); // 0-255 in, 0-255 out
}
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
}
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
}
static uint32_t ColorHSV(uint16_t hue, uint8_t sat = 255, uint8_t val = 255);
static uint32_t gamma32(uint32_t x);
void rainbow(uint16_t first_hue = 0, int8_t reps = 1,
uint8_t saturation = 255, uint8_t brightness = 255,
bool gammify = true);
static neoPixelType str2order(const char *v);
protected:
bool is800KHz; ///< true if 800 KHz pixels
bool begun; ///< true if begin() previously called
uint16_t numLEDs; ///< Number of RGB LEDs in strip
uint16_t numBytes; ///< Size of 'pixels' buffer below
int16_t pin; ///< Output pin number (-1 if not yet set)
uint8_t brightness; ///< Strip brightness 0-255 (stored as +1)
uint8_t *pixels; ///< Holds LED color values (3 or 4 bytes each)
uint8_t rOffset; ///< Red index within each 3- or 4-byte pixel
uint8_t gOffset; ///< Index of green byte
uint8_t bOffset; ///< Index of blue byte
uint8_t wOffset; ///< Index of white (==rOffset if no white)
uint32_t endTime; ///< Latch timing reference
GPIO_TypeDef *gpioPort; ///< Output GPIO PORT
uint32_t gpioPin; ///< Output GPIO PIN
};
#endif // NEOPIXEL_H