elbear_arduino_bsp/libraries/NeoPixel/src/NeoPixel.cpp
klassents 7261b03ea1 Обновление до версии 0.3.0
- обновлен elbear_fw_bootloader - добавлена проверка контрольной суммы каждой строки hex файла.
- в модуль работы с АЦП добавлена функция analogReadResolution(). Функция analogRead() теперь возвращает усредненное по 10 измерениям значение.
- общая функция обработки прерываний перенесена в память RAM. Обработчики прерываний модулей External Interrupts и Advanced I/O (функция tone()) так же перенесены в память RAM для увеличения скорости выполнения кода.
- в пакет добавлены библиотеки EEPROM, Servo, SoftSerial, NeoPixel, MFRC522 адаптированные для работы с платой Elbear Ace-Uno.
- добавлено описание особенностей работы с пакетом
2025-02-04 14:24:50 +07:00

367 lines
9.7 KiB
C++

#include "NeoPixel.h"
NeoPixel::NeoPixel(uint16_t n, int16_t p, neoPixelType t)
: begun(false), brightness(0), pixels(NULL), endTime(0) {
updateType(t);
updateLength(n);
setPin(p);
}
NeoPixel::NeoPixel()
: is800KHz(true), begun(false), numLEDs(0), numBytes(0), pin(-1), brightness(0),
pixels(NULL), rOffset(1), gOffset(0), bOffset(2), wOffset(1), endTime(0) {
}
NeoPixel::~NeoPixel() {
free(pixels);
if (pin >= 0)
pinMode(pin, INPUT);
}
void NeoPixel::begin(void) {
if (pin >= 0) {
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
}
begun = true;
}
void NeoPixel::updateLength(uint16_t n) {
free(pixels); // Free existing data (if any)
// Allocate new data -- note: ALL PIXELS ARE CLEARED
numBytes = n * ((wOffset == rOffset) ? 3 : 4);
if ((pixels = (uint8_t *)malloc(numBytes))) {
memset(pixels, 0, numBytes);
numLEDs = n;
} else {
numLEDs = numBytes = 0;
}
}
void NeoPixel::updateType(neoPixelType t) {
bool oldThreeBytesPerPixel = (wOffset == rOffset); // false if RGBW
wOffset = (t >> 6) & 0b11; // See notes in header file
rOffset = (t >> 4) & 0b11; // regarding R/G/B/W offsets
gOffset = (t >> 2) & 0b11;
bOffset = t & 0b11;
is800KHz = (t < 256); // 400 KHz flag is 1<<8
if (pixels) {
bool newThreeBytesPerPixel = (wOffset == rOffset);
if (newThreeBytesPerPixel != oldThreeBytesPerPixel)
updateLength(numLEDs);
}
}
static void __attribute__((noinline, section(".ram_text"))) mik32Show(GPIO_TypeDef* m_port, uint32_t m_pin, uint8_t* pixels, uint32_t numBytes, bool is800KHz) {
// not support 400khz
if (!is800KHz) return;
volatile uint32_t* set = &m_port->SET;
volatile uint32_t* clr = &m_port->CLEAR;
uint8_t* ptr = pixels;
uint8_t* end = ptr + numBytes;
uint8_t p = *ptr++;
uint8_t bitMask = 0x80;
noInterrupts();
while (1) {
if (p & bitMask) { // ONE
// High 800ns - 25,6 tick
*set = m_pin;
__asm volatile (
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop;"
);
// Low 450ns - 14,4 tick
*clr = m_pin;
__asm volatile (
"nop; nop; nop; nop; nop;"
);
} else { // ZERO
// High 400ns - 12,8 tick
*set = m_pin;
__asm volatile (
"nop; nop; nop; nop; nop; nop;"
);
// Low 850ns - 27,2 tick
*clr = m_pin;
__asm volatile (
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop;"
);
}
if (bitMask >>= 1) {
// Move on to the next pixel
}
else {
if (ptr >= end) {
break;
}
p = *ptr++;
bitMask = 0x80;
}
}
interrupts();
}
void NeoPixel::show(void) {
if (!pixels)
return;
while (!canShow())
;
mik32Show(gpioPort, gpioPin, pixels, numBytes, is800KHz);
endTime = micros(); // Save EOD time for latch on next call
}
void NeoPixel::setPin(int16_t p) {
if (begun && (pin >= 0))
pinMode(pin, INPUT); // Disable existing out pin
pin = p;
if (begun) {
pinMode(p, OUTPUT);
digitalWrite(p, LOW);
}
gpioPort = digitalPinToPort(pin);
gpioPin = digitalPinToBitMask(pin);
}
void NeoPixel::setPixelColor(uint16_t n, uint8_t r, uint8_t g,
uint8_t b) {
if (n < numLEDs) {
if (brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
}
uint8_t *p;
if (wOffset == rOffset) { // Is an RGB-type strip
p = &pixels[n * 3]; // 3 bytes per pixel
} else { // Is a WRGB-type strip
p = &pixels[n * 4]; // 4 bytes per pixel
p[wOffset] = 0; // But only R,G,B passed -- set W to 0
}
p[rOffset] = r; // R,G,B always stored
p[gOffset] = g;
p[bOffset] = b;
}
}
void NeoPixel::setPixelColor(uint16_t n, uint8_t r, uint8_t g,
uint8_t b, uint8_t w) {
if (n < numLEDs) {
if (brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
w = (w * brightness) >> 8;
}
uint8_t *p;
if (wOffset == rOffset) { // Is an RGB-type strip
p = &pixels[n * 3]; // 3 bytes per pixel (ignore W)
} else { // Is a WRGB-type strip
p = &pixels[n * 4]; // 4 bytes per pixel
p[wOffset] = w; // Store W
}
p[rOffset] = r; // Store R,G,B
p[gOffset] = g;
p[bOffset] = b;
}
}
void NeoPixel::setPixelColor(uint16_t n, uint32_t c) {
if (n < numLEDs) {
uint8_t *p, r = (uint8_t)(c >> 16), g = (uint8_t)(c >> 8), b = (uint8_t)c;
if (brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
}
if (wOffset == rOffset) {
p = &pixels[n * 3];
} else {
p = &pixels[n * 4];
uint8_t w = (uint8_t)(c >> 24);
p[wOffset] = brightness ? ((w * brightness) >> 8) : w;
}
p[rOffset] = r;
p[gOffset] = g;
p[bOffset] = b;
}
}
void NeoPixel::fill(uint32_t c, uint16_t first, uint16_t count) {
uint16_t i, end;
if (first >= numLEDs) {
return; // If first LED is past end of strip, nothing to do
}
// Calculate the index ONE AFTER the last pixel to fill
if (count == 0) {
// Fill to end of strip
end = numLEDs;
} else {
// Ensure that the loop won't go past the last pixel
end = first + count;
if (end > numLEDs)
end = numLEDs;
}
for (i = first; i < end; i++) {
this->setPixelColor(i, c);
}
}
uint32_t NeoPixel::ColorHSV(uint16_t hue, uint8_t sat, uint8_t val) {
uint8_t r, g, b;
hue = (hue * 1530L + 32768) / 65536;
if (hue < 510) { // Red to Green-1
b = 0;
if (hue < 255) { // Red to Yellow-1
r = 255;
g = hue; // g = 0 to 254
} else { // Yellow to Green-1
r = 510 - hue; // r = 255 to 1
g = 255;
}
} else if (hue < 1020) { // Green to Blue-1
r = 0;
if (hue < 765) { // Green to Cyan-1
g = 255;
b = hue - 510; // b = 0 to 254
} else { // Cyan to Blue-1
g = 1020 - hue; // g = 255 to 1
b = 255;
}
} else if (hue < 1530) { // Blue to Red-1
g = 0;
if (hue < 1275) { // Blue to Magenta-1
r = hue - 1020; // r = 0 to 254
b = 255;
} else { // Magenta to Red-1
r = 255;
b = 1530 - hue; // b = 255 to 1
}
} else { // Last 0.5 Red (quicker than % operator)
r = 255;
g = b = 0;
}
// Apply saturation and value to R,G,B, pack into 32-bit result:
uint32_t v1 = 1 + val; // 1 to 256; allows >>8 instead of /255
uint16_t s1 = 1 + sat; // 1 to 256; same reason
uint8_t s2 = 255 - sat; // 255 to 0
return ((((((r * s1) >> 8) + s2) * v1) & 0xff00) << 8) |
(((((g * s1) >> 8) + s2) * v1) & 0xff00) |
(((((b * s1) >> 8) + s2) * v1) >> 8);
}
uint32_t NeoPixel::getPixelColor(uint16_t n) const {
if (n >= numLEDs)
return 0; // Out of bounds, return no color.
uint8_t *p;
if (wOffset == rOffset) { // Is RGB-type device
p = &pixels[n * 3];
if (brightness) {
return (((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
(((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
((uint32_t)(p[bOffset] << 8) / brightness);
} else {
// No brightness adjustment has been made -- return 'raw' color
return ((uint32_t)p[rOffset] << 16) | ((uint32_t)p[gOffset] << 8) |
(uint32_t)p[bOffset];
}
} else { // Is RGBW-type device
p = &pixels[n * 4];
if (brightness) { // Return scaled color
return (((uint32_t)(p[wOffset] << 8) / brightness) << 24) |
(((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
(((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
((uint32_t)(p[bOffset] << 8) / brightness);
} else { // Return raw color
return ((uint32_t)p[wOffset] << 24) | ((uint32_t)p[rOffset] << 16) |
((uint32_t)p[gOffset] << 8) | (uint32_t)p[bOffset];
}
}
}
void NeoPixel::setBrightness(uint8_t b) {
uint8_t newBrightness = b + 1;
if (newBrightness != brightness) {
uint8_t c, *ptr = pixels,
oldBrightness = brightness - 1; // De-wrap old brightness value
uint16_t scale;
if (oldBrightness == 0)
scale = 0; // Avoid /0
else if (b == 255)
scale = 65535 / oldBrightness;
else
scale = (((uint16_t)newBrightness << 8) - 1) / oldBrightness;
for (uint16_t i = 0; i < numBytes; i++) {
c = *ptr;
*ptr++ = (c * scale) >> 8;
}
brightness = newBrightness;
}
}
uint8_t NeoPixel::getBrightness(void) const { return brightness - 1; }
void NeoPixel::clear(void) { memset(pixels, 0, numBytes); }
uint32_t NeoPixel::gamma32(uint32_t x) {
uint8_t *y = (uint8_t *)&x;
for (uint8_t i = 0; i < 4; i++)
y[i] = gamma8(y[i]);
return x; // Packed 32-bit return
}
void NeoPixel::rainbow(uint16_t first_hue, int8_t reps,
uint8_t saturation, uint8_t brightness, bool gammify) {
for (uint16_t i=0; i<numLEDs; i++) {
uint16_t hue = first_hue + (i * reps * 65536) / numLEDs;
uint32_t color = ColorHSV(hue, saturation, brightness);
if (gammify) color = gamma32(color);
setPixelColor(i, color);
}
}
neoPixelType NeoPixel::str2order(const char *v) {
int8_t r = 0, g = 0, b = 0, w = -1;
if (v) {
char c;
for (uint8_t i=0; ((c = tolower(v[i]))); i++) {
if (c == 'r') r = i;
else if (c == 'g') g = i;
else if (c == 'b') b = i;
else if (c == 'w') w = i;
}
r &= 3;
}
if (w < 0) w = r; // If 'w' not specified, duplicate r bits
return (w << 6) | (r << 4) | ((g & 3) << 2) | (b & 3);
}