- обновлен elbear_fw_bootloader - добавлена проверка контрольной суммы каждой строки hex файла. - в модуль работы с АЦП добавлена функция analogReadResolution(). Функция analogRead() теперь возвращает усредненное по 10 измерениям значение. - общая функция обработки прерываний перенесена в память RAM. Обработчики прерываний модулей External Interrupts и Advanced I/O (функция tone()) так же перенесены в память RAM для увеличения скорости выполнения кода. - в пакет добавлены библиотеки EEPROM, Servo, SoftSerial, NeoPixel, MFRC522 адаптированные для работы с платой Elbear Ace-Uno. - добавлено описание особенностей работы с пакетом
367 lines
9.7 KiB
C++
367 lines
9.7 KiB
C++
#include "NeoPixel.h"
|
|
|
|
NeoPixel::NeoPixel(uint16_t n, int16_t p, neoPixelType t)
|
|
: begun(false), brightness(0), pixels(NULL), endTime(0) {
|
|
updateType(t);
|
|
updateLength(n);
|
|
setPin(p);
|
|
}
|
|
|
|
NeoPixel::NeoPixel()
|
|
: is800KHz(true), begun(false), numLEDs(0), numBytes(0), pin(-1), brightness(0),
|
|
pixels(NULL), rOffset(1), gOffset(0), bOffset(2), wOffset(1), endTime(0) {
|
|
}
|
|
|
|
NeoPixel::~NeoPixel() {
|
|
free(pixels);
|
|
if (pin >= 0)
|
|
pinMode(pin, INPUT);
|
|
}
|
|
|
|
void NeoPixel::begin(void) {
|
|
if (pin >= 0) {
|
|
pinMode(pin, OUTPUT);
|
|
digitalWrite(pin, LOW);
|
|
}
|
|
begun = true;
|
|
}
|
|
|
|
void NeoPixel::updateLength(uint16_t n) {
|
|
free(pixels); // Free existing data (if any)
|
|
|
|
// Allocate new data -- note: ALL PIXELS ARE CLEARED
|
|
numBytes = n * ((wOffset == rOffset) ? 3 : 4);
|
|
if ((pixels = (uint8_t *)malloc(numBytes))) {
|
|
memset(pixels, 0, numBytes);
|
|
numLEDs = n;
|
|
} else {
|
|
numLEDs = numBytes = 0;
|
|
}
|
|
}
|
|
|
|
void NeoPixel::updateType(neoPixelType t) {
|
|
bool oldThreeBytesPerPixel = (wOffset == rOffset); // false if RGBW
|
|
|
|
wOffset = (t >> 6) & 0b11; // See notes in header file
|
|
rOffset = (t >> 4) & 0b11; // regarding R/G/B/W offsets
|
|
gOffset = (t >> 2) & 0b11;
|
|
bOffset = t & 0b11;
|
|
is800KHz = (t < 256); // 400 KHz flag is 1<<8
|
|
|
|
if (pixels) {
|
|
bool newThreeBytesPerPixel = (wOffset == rOffset);
|
|
if (newThreeBytesPerPixel != oldThreeBytesPerPixel)
|
|
updateLength(numLEDs);
|
|
}
|
|
}
|
|
|
|
static void __attribute__((noinline, section(".ram_text"))) mik32Show(GPIO_TypeDef* m_port, uint32_t m_pin, uint8_t* pixels, uint32_t numBytes, bool is800KHz) {
|
|
// not support 400khz
|
|
if (!is800KHz) return;
|
|
|
|
volatile uint32_t* set = &m_port->SET;
|
|
volatile uint32_t* clr = &m_port->CLEAR;
|
|
|
|
uint8_t* ptr = pixels;
|
|
uint8_t* end = ptr + numBytes;
|
|
uint8_t p = *ptr++;
|
|
uint8_t bitMask = 0x80;
|
|
|
|
noInterrupts();
|
|
|
|
while (1) {
|
|
if (p & bitMask) { // ONE
|
|
// High 800ns - 25,6 tick
|
|
*set = m_pin;
|
|
__asm volatile (
|
|
"nop; nop; nop; nop; nop; nop; nop; nop;"
|
|
"nop; nop; nop; nop; nop; nop; nop; nop;"
|
|
"nop; nop; nop; nop;"
|
|
);
|
|
|
|
// Low 450ns - 14,4 tick
|
|
*clr = m_pin;
|
|
__asm volatile (
|
|
"nop; nop; nop; nop; nop;"
|
|
);
|
|
} else { // ZERO
|
|
// High 400ns - 12,8 tick
|
|
*set = m_pin;
|
|
__asm volatile (
|
|
"nop; nop; nop; nop; nop; nop;"
|
|
);
|
|
|
|
// Low 850ns - 27,2 tick
|
|
*clr = m_pin;
|
|
__asm volatile (
|
|
"nop; nop; nop; nop; nop; nop; nop; nop;"
|
|
"nop; nop; nop;"
|
|
);
|
|
}
|
|
|
|
if (bitMask >>= 1) {
|
|
// Move on to the next pixel
|
|
}
|
|
else {
|
|
if (ptr >= end) {
|
|
break;
|
|
}
|
|
p = *ptr++;
|
|
bitMask = 0x80;
|
|
}
|
|
}
|
|
interrupts();
|
|
}
|
|
|
|
void NeoPixel::show(void) {
|
|
|
|
if (!pixels)
|
|
return;
|
|
|
|
while (!canShow())
|
|
;
|
|
mik32Show(gpioPort, gpioPin, pixels, numBytes, is800KHz);
|
|
endTime = micros(); // Save EOD time for latch on next call
|
|
}
|
|
|
|
void NeoPixel::setPin(int16_t p) {
|
|
if (begun && (pin >= 0))
|
|
pinMode(pin, INPUT); // Disable existing out pin
|
|
pin = p;
|
|
if (begun) {
|
|
pinMode(p, OUTPUT);
|
|
digitalWrite(p, LOW);
|
|
}
|
|
|
|
gpioPort = digitalPinToPort(pin);
|
|
gpioPin = digitalPinToBitMask(pin);
|
|
}
|
|
|
|
void NeoPixel::setPixelColor(uint16_t n, uint8_t r, uint8_t g,
|
|
uint8_t b) {
|
|
if (n < numLEDs) {
|
|
if (brightness) { // See notes in setBrightness()
|
|
r = (r * brightness) >> 8;
|
|
g = (g * brightness) >> 8;
|
|
b = (b * brightness) >> 8;
|
|
}
|
|
uint8_t *p;
|
|
if (wOffset == rOffset) { // Is an RGB-type strip
|
|
p = &pixels[n * 3]; // 3 bytes per pixel
|
|
} else { // Is a WRGB-type strip
|
|
p = &pixels[n * 4]; // 4 bytes per pixel
|
|
p[wOffset] = 0; // But only R,G,B passed -- set W to 0
|
|
}
|
|
p[rOffset] = r; // R,G,B always stored
|
|
p[gOffset] = g;
|
|
p[bOffset] = b;
|
|
}
|
|
}
|
|
|
|
void NeoPixel::setPixelColor(uint16_t n, uint8_t r, uint8_t g,
|
|
uint8_t b, uint8_t w) {
|
|
|
|
if (n < numLEDs) {
|
|
if (brightness) { // See notes in setBrightness()
|
|
r = (r * brightness) >> 8;
|
|
g = (g * brightness) >> 8;
|
|
b = (b * brightness) >> 8;
|
|
w = (w * brightness) >> 8;
|
|
}
|
|
uint8_t *p;
|
|
if (wOffset == rOffset) { // Is an RGB-type strip
|
|
p = &pixels[n * 3]; // 3 bytes per pixel (ignore W)
|
|
} else { // Is a WRGB-type strip
|
|
p = &pixels[n * 4]; // 4 bytes per pixel
|
|
p[wOffset] = w; // Store W
|
|
}
|
|
p[rOffset] = r; // Store R,G,B
|
|
p[gOffset] = g;
|
|
p[bOffset] = b;
|
|
}
|
|
}
|
|
|
|
void NeoPixel::setPixelColor(uint16_t n, uint32_t c) {
|
|
if (n < numLEDs) {
|
|
uint8_t *p, r = (uint8_t)(c >> 16), g = (uint8_t)(c >> 8), b = (uint8_t)c;
|
|
if (brightness) { // See notes in setBrightness()
|
|
r = (r * brightness) >> 8;
|
|
g = (g * brightness) >> 8;
|
|
b = (b * brightness) >> 8;
|
|
}
|
|
if (wOffset == rOffset) {
|
|
p = &pixels[n * 3];
|
|
} else {
|
|
p = &pixels[n * 4];
|
|
uint8_t w = (uint8_t)(c >> 24);
|
|
p[wOffset] = brightness ? ((w * brightness) >> 8) : w;
|
|
}
|
|
p[rOffset] = r;
|
|
p[gOffset] = g;
|
|
p[bOffset] = b;
|
|
}
|
|
}
|
|
|
|
void NeoPixel::fill(uint32_t c, uint16_t first, uint16_t count) {
|
|
uint16_t i, end;
|
|
|
|
if (first >= numLEDs) {
|
|
return; // If first LED is past end of strip, nothing to do
|
|
}
|
|
|
|
// Calculate the index ONE AFTER the last pixel to fill
|
|
if (count == 0) {
|
|
// Fill to end of strip
|
|
end = numLEDs;
|
|
} else {
|
|
// Ensure that the loop won't go past the last pixel
|
|
end = first + count;
|
|
if (end > numLEDs)
|
|
end = numLEDs;
|
|
}
|
|
|
|
for (i = first; i < end; i++) {
|
|
this->setPixelColor(i, c);
|
|
}
|
|
}
|
|
|
|
uint32_t NeoPixel::ColorHSV(uint16_t hue, uint8_t sat, uint8_t val) {
|
|
|
|
uint8_t r, g, b;
|
|
|
|
hue = (hue * 1530L + 32768) / 65536;
|
|
|
|
if (hue < 510) { // Red to Green-1
|
|
b = 0;
|
|
if (hue < 255) { // Red to Yellow-1
|
|
r = 255;
|
|
g = hue; // g = 0 to 254
|
|
} else { // Yellow to Green-1
|
|
r = 510 - hue; // r = 255 to 1
|
|
g = 255;
|
|
}
|
|
} else if (hue < 1020) { // Green to Blue-1
|
|
r = 0;
|
|
if (hue < 765) { // Green to Cyan-1
|
|
g = 255;
|
|
b = hue - 510; // b = 0 to 254
|
|
} else { // Cyan to Blue-1
|
|
g = 1020 - hue; // g = 255 to 1
|
|
b = 255;
|
|
}
|
|
} else if (hue < 1530) { // Blue to Red-1
|
|
g = 0;
|
|
if (hue < 1275) { // Blue to Magenta-1
|
|
r = hue - 1020; // r = 0 to 254
|
|
b = 255;
|
|
} else { // Magenta to Red-1
|
|
r = 255;
|
|
b = 1530 - hue; // b = 255 to 1
|
|
}
|
|
} else { // Last 0.5 Red (quicker than % operator)
|
|
r = 255;
|
|
g = b = 0;
|
|
}
|
|
|
|
// Apply saturation and value to R,G,B, pack into 32-bit result:
|
|
uint32_t v1 = 1 + val; // 1 to 256; allows >>8 instead of /255
|
|
uint16_t s1 = 1 + sat; // 1 to 256; same reason
|
|
uint8_t s2 = 255 - sat; // 255 to 0
|
|
return ((((((r * s1) >> 8) + s2) * v1) & 0xff00) << 8) |
|
|
(((((g * s1) >> 8) + s2) * v1) & 0xff00) |
|
|
(((((b * s1) >> 8) + s2) * v1) >> 8);
|
|
}
|
|
|
|
|
|
uint32_t NeoPixel::getPixelColor(uint16_t n) const {
|
|
if (n >= numLEDs)
|
|
return 0; // Out of bounds, return no color.
|
|
|
|
uint8_t *p;
|
|
|
|
if (wOffset == rOffset) { // Is RGB-type device
|
|
p = &pixels[n * 3];
|
|
if (brightness) {
|
|
|
|
return (((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
|
|
(((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
|
|
((uint32_t)(p[bOffset] << 8) / brightness);
|
|
} else {
|
|
// No brightness adjustment has been made -- return 'raw' color
|
|
return ((uint32_t)p[rOffset] << 16) | ((uint32_t)p[gOffset] << 8) |
|
|
(uint32_t)p[bOffset];
|
|
}
|
|
} else { // Is RGBW-type device
|
|
p = &pixels[n * 4];
|
|
if (brightness) { // Return scaled color
|
|
return (((uint32_t)(p[wOffset] << 8) / brightness) << 24) |
|
|
(((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
|
|
(((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
|
|
((uint32_t)(p[bOffset] << 8) / brightness);
|
|
} else { // Return raw color
|
|
return ((uint32_t)p[wOffset] << 24) | ((uint32_t)p[rOffset] << 16) |
|
|
((uint32_t)p[gOffset] << 8) | (uint32_t)p[bOffset];
|
|
}
|
|
}
|
|
}
|
|
|
|
void NeoPixel::setBrightness(uint8_t b) {
|
|
|
|
uint8_t newBrightness = b + 1;
|
|
if (newBrightness != brightness) {
|
|
|
|
uint8_t c, *ptr = pixels,
|
|
oldBrightness = brightness - 1; // De-wrap old brightness value
|
|
uint16_t scale;
|
|
if (oldBrightness == 0)
|
|
scale = 0; // Avoid /0
|
|
else if (b == 255)
|
|
scale = 65535 / oldBrightness;
|
|
else
|
|
scale = (((uint16_t)newBrightness << 8) - 1) / oldBrightness;
|
|
for (uint16_t i = 0; i < numBytes; i++) {
|
|
c = *ptr;
|
|
*ptr++ = (c * scale) >> 8;
|
|
}
|
|
brightness = newBrightness;
|
|
}
|
|
}
|
|
|
|
uint8_t NeoPixel::getBrightness(void) const { return brightness - 1; }
|
|
|
|
void NeoPixel::clear(void) { memset(pixels, 0, numBytes); }
|
|
|
|
uint32_t NeoPixel::gamma32(uint32_t x) {
|
|
uint8_t *y = (uint8_t *)&x;
|
|
|
|
for (uint8_t i = 0; i < 4; i++)
|
|
y[i] = gamma8(y[i]);
|
|
return x; // Packed 32-bit return
|
|
}
|
|
|
|
void NeoPixel::rainbow(uint16_t first_hue, int8_t reps,
|
|
uint8_t saturation, uint8_t brightness, bool gammify) {
|
|
for (uint16_t i=0; i<numLEDs; i++) {
|
|
uint16_t hue = first_hue + (i * reps * 65536) / numLEDs;
|
|
uint32_t color = ColorHSV(hue, saturation, brightness);
|
|
if (gammify) color = gamma32(color);
|
|
setPixelColor(i, color);
|
|
}
|
|
}
|
|
|
|
neoPixelType NeoPixel::str2order(const char *v) {
|
|
int8_t r = 0, g = 0, b = 0, w = -1;
|
|
if (v) {
|
|
char c;
|
|
for (uint8_t i=0; ((c = tolower(v[i]))); i++) {
|
|
if (c == 'r') r = i;
|
|
else if (c == 'g') g = i;
|
|
else if (c == 'b') b = i;
|
|
else if (c == 'w') w = i;
|
|
}
|
|
r &= 3;
|
|
}
|
|
if (w < 0) w = r; // If 'w' not specified, duplicate r bits
|
|
return (w << 6) | (r << 4) | ((g & 3) << 2) | (b & 3);
|
|
}
|