elbear_arduino_bsp/libraries/IRremote/examples/SendDemo/SendDemo.ino
2025-01-21 16:59:47 +07:00

421 lines
18 KiB
C++

/*
* SendDemo.cpp
*
* Demonstrates sending IR codes in standard format with address and command
*
* This file is part of Arduino-IRremote https://github.com/Arduino-IRremote/Arduino-IRremote.
*
************************************************************************************
* MIT License
*
* Copyright (c) 2020-2023 Armin Joachimsmeyer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
************************************************************************************
*/
#include <Arduino.h>
//#define EXCLUDE_EXOTIC_PROTOCOLS // Saves around 240 bytes program memory if IrSender.write is used
#define SEND_PWM_BY_TIMER // Disable carrier PWM generation in software and use (restricted) hardware PWM.
//#define USE_NO_SEND_PWM // Use no carrier PWM, just simulate an active low receiver signal. Overrides SEND_PWM_BY_TIMER definition
//#define USE_ACTIVE_HIGH_OUTPUT_FOR_SEND_PIN // Simulate an active high receiver signal instead of an active low signal.
//#define NO_LED_FEEDBACK_CODE // Saves 566 bytes program memory
//#undef IR_SEND_PIN // enable this, if you need to set send pin programmatically using uint8_t tSendPin below
/*
* Helper macro for getting a macro definition as string
*/
#if !defined(STR_HELPER)
#define STR_HELPER(x) #x
#define STR(x) STR_HELPER(x)
#endif
#include <IRremote.hpp>
#define DELAY_AFTER_SEND 2000
#define DELAY_AFTER_LOOP 5000
void setup() {
Serial.begin(9600);
while (!Serial)
; // Wait for Serial to become available. Is optimized away for some cores.
// Just to know which program is running on my Arduino
Serial.println(F("START " __FILE__ " from " __DATE__ "\r\nUsing library version " VERSION_IRREMOTE));
#if defined(IR_SEND_PIN)
IrSender.begin(); // Start with IR_SEND_PIN as send pin and enable feedback LED at default feedback LED pin
// disableLEDFeedback(); // Disable feedback LED at default feedback LED pin
Serial.println(F("Send IR signals at pin " STR(IR_SEND_PIN)));
#else
// Here the macro IR_SEND_PIN is not defined or undefined above with #undef IR_SEND_PIN
uint8_t tSendPin = 3;
IrSender.begin(tSendPin, ENABLE_LED_FEEDBACK, USE_DEFAULT_FEEDBACK_LED_PIN); // Specify send pin and enable feedback LED at default feedback LED pin
// You can change send pin later with IrSender.setSendPin();
Serial.print(F("Send IR signals at pin "));
Serial.println(tSendPin);
#endif
#if !defined(SEND_PWM_BY_TIMER)
/*
* Print internal software PWM signal generation info
*/
IrSender.enableIROut(38); // Call it with 38 kHz just to initialize the values printed below
Serial.print(F("Send signal mark duration is "));
Serial.print(IrSender.periodOnTimeMicros);
Serial.print(F(" us, pulse narrowing correction is "));
Serial.print(IrSender.getPulseCorrectionNanos());
Serial.print(F(" ns, total period is "));
Serial.print(IrSender.periodTimeMicros);
Serial.println(F(" us"));
#endif
#if defined(LED_BUILTIN) && !defined(NO_LED_FEEDBACK_CODE)
# if defined(FEEDBACK_LED_IS_ACTIVE_LOW)
Serial.print(F("Active low "));
# endif
Serial.print(F("FeedbackLED at pin "));
Serial.println(LED_BUILTIN); // Works also for ESP32: static const uint8_t LED_BUILTIN = 8; #define LED_BUILTIN LED_BUILTIN
#endif
}
/*
* Set up the data to be sent.
* For most protocols, the data is build up with a constant 8 (or 16 byte) address
* and a variable 8 bit command.
* There are exceptions like Sony and Denon, which have 5 bit address.
*/
uint16_t sAddress = 0x0102;
uint8_t sCommand = 0x34;
uint16_t s16BitCommand = 0x5634;
uint8_t sRepeats = 0;
void loop() {
/*
* Print values
*/
Serial.println();
Serial.print(F("address=0x"));
Serial.print(sAddress, HEX);
Serial.print(F(" command=0x"));
Serial.print(sCommand, HEX);
Serial.print(F(" repeats="));
Serial.println(sRepeats);
Serial.println();
Serial.println();
Serial.flush();
Serial.println(F("Send NEC with 8 bit address"));
Serial.flush();
IrSender.sendNEC(sAddress & 0xFF, sCommand, sRepeats);
delay(DELAY_AFTER_SEND); // delay must be greater than 5 ms (RECORD_GAP_MICROS), otherwise the receiver sees it as one long signal
// Serial.println(F("Send NEC with 16 bit address"));
// Serial.flush();
// IrSender.sendNEC(sAddress, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send NEC2 with 16 bit address"));
// Serial.flush();
// IrSender.sendNEC2(sAddress, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// if (sRepeats == 0) {
// /*
// * Send constant values only once in this demo
// */
// Serial.println(F("Sending NEC Pronto data with 8 bit address 0x80 and command 0x45 and no repeats"));
// Serial.flush();
// IrSender.sendPronto(F("0000 006D 0022 0000 015E 00AB " /* Pronto header + start bit */
// "0017 0015 0017 0015 0017 0017 0015 0017 0017 0015 0017 0015 0017 0015 0017 003F " /* Lower address byte */
// "0017 003F 0017 003E 0017 003F 0015 003F 0017 003E 0017 003F 0017 003E 0017 0015 " /* Upper address byte (inverted at 8 bit mode) */
// "0017 003E 0017 0015 0017 003F 0017 0015 0017 0015 0017 0015 0017 003F 0017 0015 " /* command byte */
// "0019 0013 0019 003C 0017 0015 0017 003F 0017 003E 0017 003F 0017 0015 0017 003E " /* inverted command byte */
// "0017 0806"), 0); //stop bit, no repeat possible, because of missing repeat pattern
// delay(DELAY_AFTER_SEND);
// /*
// * !!! The next data occupies 136 bytes RAM !!!
// */
// Serial.println(
// F("Send NEC sendRaw data with 8 bit address=0xFB04 and command 0x08 and exact timing (16 bit array format)"));
// Serial.flush();
// const uint16_t irSignal[] = { 9000, 4500/*Start bit*/, 560, 560, 560, 560, 560, 1690, 560,
// 560/*0010 0x4 of 16 bit address LSB first*/, 560, 560, 560, 560, 560, 560, 560, 560/*0000*/, 560, 1690, 560, 1690,
// 560, 560, 560, 1690/*1101 0xB*/, 560, 1690, 560, 1690, 560, 1690, 560, 1690/*1111*/, 560, 560, 560, 560, 560, 560,
// 560, 1690/*0001 0x08 of command LSB first*/, 560, 560, 560, 560, 560, 560, 560, 560/*0000 0x00*/, 560, 1690, 560,
// 1690, 560, 1690, 560, 560/*1110 Inverted 8 of command*/, 560, 1690, 560, 1690, 560, 1690, 560,
// 1690/*1111 inverted 0 of command*/, 560 /*stop bit*/}; // Using exact NEC timing
// IrSender.sendRaw(irSignal, sizeof(irSignal) / sizeof(irSignal[0]), NEC_KHZ); // Note the approach used to automatically calculate the size of the array.
// delay(DELAY_AFTER_SEND);
// /*
// * With sendNECRaw() you can send 32 bit combined codes
// */
// Serial.println(F("Send ONKYO with 16 bit address 0x0102 and 16 bit command 0x0304 with NECRaw(0x03040102)"));
// Serial.flush();
// IrSender.sendNECRaw(0x03040102, sRepeats);
// delay(DELAY_AFTER_SEND);
// /*
// * With Send sendNECMSB() you can send your old 32 bit codes.
// * To convert one into the other, you must reverse the byte positions and then reverse all positions of each byte.
// * Use bitreverse32Bit().
// * Example:
// * 0xCB340102 byte reverse -> 0x020134CB bit reverse-> 40802CD3
// */
// Serial.println(F("Send ONKYO with 16 bit address 0x0102 and command 0x34 with old 32 bit format MSB first (0x40802CD3)"));
// Serial.flush();
// IrSender.sendNECMSB(0x40802CD3, 32, false);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Panasonic 0xB, 0x10 as 48 bit PulseDistance using ProtocolConstants"));
// Serial.flush();
// IrSender.sendPulseDistanceWidth(&KaseikyoProtocolConstants, 0xA010B02002, 48, NO_REPEATS); // Panasonic is a Kaseikyo variant
// delay(DELAY_AFTER_SEND);
// /*
// * Send 2 Panasonic 48 bit codes as Pulse Distance data, once with LSB and once with MSB first
// */
// Serial.println(F("Send Panasonic 0xB, 0x10 as 48 bit PulseDistance"));
// Serial.println(F(" LSB first"));
// Serial.flush();
// IrSender.sendPulseDistanceWidth(38, 3450, 1700, 450, 1250, 450, 400, 0xA010B02002, 48, PROTOCOL_IS_LSB_FIRST,
// 0, NO_REPEATS);
// delay(DELAY_AFTER_SEND);
// // The same with MSB first. Use bit reversed raw data of LSB first part
// Serial.println(F(" MSB first"));
// IrSender.sendPulseDistanceWidth(38, 3450, 1700, 450, 1250, 450, 400, 0x40040D000805, 48, PROTOCOL_IS_MSB_FIRST,
// 0, NO_REPEATS);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send 72 bit PulseDistance 0x5A AFEDCBA9 87654321 LSB first"));
// Serial.flush();
// IRRawDataType tRawData[] = { 0xAFEDCBA987654321, 0x5A }; // LSB of tRawData[0] is sent first
// IrSender.sendPulseDistanceWidthFromArray(38, 8900, 4450, 550, 1700, 550, 600, &tRawData[0], 72, PROTOCOL_IS_LSB_FIRST, 0, NO_REPEATS);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send 52 bit PulseDistanceWidth 0xDCBA9 87654321 LSB first"));
// Serial.flush();
// // Real PulseDistanceWidth (constant bit length) does not require a stop bit
// IrSender.sendPulseDistanceWidth(38, 300, 600, 600, 300, 300, 600, 0xDCBA987654321, 52, PROTOCOL_IS_LSB_FIRST,
// 0, 0);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send ASCII 7 bit PulseDistanceWidth LSB first"));
// Serial.flush();
// // Real PulseDistanceWidth (constant bit length) does theoretically not require a stop bit, but we know the stop bit from serial transmission
// IrSender.sendPulseDistanceWidth(38, 6000, 500, 500, 1500, 1500, 500, sCommand, 7, PROTOCOL_IS_LSB_FIRST, 0, 0);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Sony12 as PulseWidth LSB first"));
// Serial.flush();
// uint32_t tData = (uint32_t) sAddress << 7 | (sCommand & 0x7F);
// IrSender.sendPulseDistanceWidth(38, 2400, 600, 1200, 600, 600, 600, tData, SIRCS_12_PROTOCOL, PROTOCOL_IS_LSB_FIRST, 0, 0);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send 32 bit PulseWidth 0x87654321 LSB first"));
// Serial.flush();
// // Real PulseDistanceWidth (constant bit length) does not require a stop bit
// IrSender.sendPulseDistanceWidth(38, 1000, 500, 600, 300, 300, 300, 0x87654321, 32, PROTOCOL_IS_LSB_FIRST, 0, 0);
// delay(DELAY_AFTER_SEND);
// }
// Serial.println(F("Send Onkyo (NEC with 16 bit command)"));
// Serial.flush();
// IrSender.sendOnkyo(sAddress, s16BitCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Apple"));
// Serial.flush();
// IrSender.sendApple(sAddress & 0xFF, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Panasonic"));
// Serial.flush();
// IrSender.sendPanasonic(sAddress & 0xFFF, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Kaseikyo with 0x4711 as Vendor ID"));
// Serial.flush();
// IrSender.sendKaseikyo(sAddress & 0xFFF, sCommand, sRepeats, 0x4711);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Kaseikyo_Denon variant"));
// Serial.flush();
// IrSender.sendKaseikyo_Denon(sAddress & 0xFFF, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Denon"));
// Serial.flush();
// IrSender.sendDenon(sAddress & 0x1F, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Denon/Sharp variant"));
// Serial.flush();
// IrSender.sendSharp(sAddress & 0x1F, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Sony/SIRCS with 7 command and 5 address bits"));
// Serial.flush();
// IrSender.sendSony(sAddress & 0x1F, sCommand & 0x7F, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Sony/SIRCS with 7 command and 8 address bits"));
// Serial.flush();
// IrSender.sendSony(sAddress & 0xFF, sCommand, sRepeats, SIRCS_15_PROTOCOL);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Sony/SIRCS with 7 command and 13 address bits"));
// Serial.flush();
// IrSender.sendSony(sAddress & 0x1FFF, sCommand & 0x7F, sRepeats, SIRCS_20_PROTOCOL);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Samsung 8 bit command"));
// Serial.flush();
// IrSender.sendSamsung(sAddress, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Samsung 16 bit command"));
// Serial.flush();
// IrSender.sendSamsung(sAddress, s16BitCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Samsung48 16 bit command"));
// Serial.flush();
// IrSender.sendSamsung48(sAddress, s16BitCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send RC5"));
// Serial.flush();
// IrSender.sendRC5(sAddress & 0x1F, sCommand & 0x3F, sRepeats, true); // 5 address, 6 command bits
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send RC5X with 7.th MSB of command set"));
// Serial.flush();
// IrSender.sendRC5(sAddress & 0x1F, (sCommand & 0x3F) + 0x40, sRepeats, true); // 5 address, 7 command bits
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send RC6"));
// Serial.flush();
// IrSender.sendRC6(sAddress, sCommand, sRepeats, true);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send RC6A with 14 bit 0x2711 as extra"));
// Serial.flush();
// IrSender.sendRC6A(sAddress & 0xFF, sCommand, sRepeats, 0x2711, true);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send MagiQuest"));
// Serial.flush();
// IrSender.sendMagiQuest(0x6BCD0000 | (uint32_t) sAddress, s16BitCommand); // we have 31 bit address
// delay(DELAY_AFTER_SEND);
// /*
// * Next example how to use the IrSender.write function
// */
// IRData IRSendData;
// // prepare data
// IRSendData.address = sAddress;
// IRSendData.command = sCommand;
// IRSendData.flags = IRDATA_FLAGS_EMPTY;
// Serial.println(F("Send next protocols with IrSender.write"));
// Serial.flush();
// IRSendData.protocol = JVC; // switch protocol
// Serial.print(F("Send "));
// Serial.println(getProtocolString(IRSendData.protocol));
// Serial.flush();
// IrSender.write(&IRSendData, sRepeats);
// delay(DELAY_AFTER_SEND);
// IRSendData.command = s16BitCommand; // LG support more than 8 bit command
// IRSendData.protocol = SAMSUNG;
// Serial.print(F("Send "));
// Serial.println(getProtocolString(IRSendData.protocol));
// Serial.flush();
// IrSender.write(&IRSendData, sRepeats);
// delay(DELAY_AFTER_SEND);
// IRSendData.protocol = LG;
// Serial.print(F("Send "));
// Serial.println(getProtocolString(IRSendData.protocol));
// Serial.flush();
// IrSender.write(&IRSendData, sRepeats);
// delay(DELAY_AFTER_SEND);
// IRSendData.protocol = BOSEWAVE;
// Serial.println(F("Send Bosewave with no address and 8 command bits"));
// Serial.flush();
// IrSender.write(&IRSendData, sRepeats);
// delay(DELAY_AFTER_SEND);
// IRSendData.protocol = FAST;
// Serial.print(F("Send "));
// Serial.println(getProtocolString(IRSendData.protocol));
// Serial.flush();
// IrSender.write(&IRSendData, sRepeats);
// delay(DELAY_AFTER_SEND);
// /*
// * LEGO is difficult to receive because of its short marks and spaces
// */
// Serial.println(F("Send Lego with 2 channel and with 4 command bits"));
// Serial.flush();
// IrSender.sendLegoPowerFunctions(sAddress, sCommand, LEGO_MODE_COMBO, true);
// delay(DELAY_AFTER_SEND);
// /*
// * Force buffer overflow
// */
// Serial.println(F("Force buffer overflow by sending 700 marks and spaces"));
// for (unsigned int i = 0; i < 350; ++i) {
// // 400 + 400 should be received as 8/8 and sometimes as 9/7 or 7/9 if compensation by MARK_EXCESS_MICROS is optimal.
// // 210 + 540 = 750 should be received as 5/10 or 4/11 if compensation by MARK_EXCESS_MICROS is optimal.
// IrSender.mark(210); // 8 pulses at 38 kHz
// IrSender.space(540); // to fill up to 750 us
// }
// delay(DELAY_AFTER_SEND);
// /*
// * Increment values
// * Also increment address just for demonstration, which normally makes no sense
// */
// sAddress += 0x0101;
// sCommand += 0x11;
// s16BitCommand += 0x1111;
// sRepeats++;
// // clip repeats at 4
// if (sRepeats > 4) {
// sRepeats = 4;
// }
//delay(DELAY_AFTER_LOOP); // additional delay at the end of each loop
}