elbear_arduino_bsp/libraries/SoftwareSerial/src/SoftwareSerial.cpp
KlassenTS 1c8e06634c v0.5.0
- добавлена поддержка платы ELBEAR ACE-NANO;
- добавлена поддержка плат ELSOMIK OEM и SE;
- добавлена возможность работы в режиме отладки для всех плат, входящих в состав пакета. Доступно для версии ArduinoIDE 2 и выше;
- добавлена поддержка библиотеки FreeRTOS;
- добавлена поддержка библиотеки IRremote;
- добавлена поддержка библиотеки OneWire;
- добавлена поддержка аппаратного I2C0 для плат START-MIK32 и ELSOMIK. Для работы с ним доступен экземпляр класса Wire1;
- добавлена поддержка аппаратного SPI0 для всех плат, входящих в пакет. Для работы с ним доступен экземпляр класса SPI1;
- увеличено быстродействие функций digitalWrite, digitalRead;
- исправлены известные ошибки.
Co-authored-by: KlassenTS <klassen@elron.tech>
Co-committed-by: KlassenTS <klassen@elron.tech>
2025-04-28 07:06:08 +03:00

375 lines
10 KiB
C++

/*
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
The latest version of this library can always be found at
http://arduiniana.org.
*/
#include <Arduino.h>
#include <SoftwareSerial.h>
#include "wiring_LL.h"
#define MAX_SOFT_SERIAL_SPEED 115200
#define MIN_SOFT_SERIAL_SPEED 300
// Statics
// static variable is common to all class instances
SoftwareSerial *SoftwareSerial::active_object = 0;
uint8_t SoftwareSerial::_receive_buffer[_SS_MAX_RX_BUFF];
volatile uint8_t SoftwareSerial::_receive_buffer_tail = 0;
volatile uint8_t SoftwareSerial::_receive_buffer_head = 0;
// Private methods
// function placed in ram. Should not call other function placed in flash
void SoftwareSerial::tunedDelay(uint32_t delayTicks) // .ram_text
{
if (delayTicks > 1)
{
uint64_t startTicks = SYSTICK_GET_TICKS();
while ((SYSTICK_GET_TICKS() - startTicks) < delayTicks)
;
}
}
// This function sets the current object as the "listening"
// one and returns true if it replaces another
bool SoftwareSerial::listen()
{
if (!_rx_delay_stopbit)
return false;
if (active_object != this)
{
if (active_object)
active_object->stopListening();
_buffer_overflow = false;
_receive_buffer_head = _receive_buffer_tail = 0;
active_object = this;
setRxIntMsk(true);
return true;
}
return false;
}
// Stop listening. Returns true if we were actually listening.
bool SoftwareSerial::stopListening()
{
if (active_object == this)
{
setRxIntMsk(false);
active_object = NULL;
return true;
}
return false;
}
//
// The receive routine called by the interrupt handler
//
void SoftwareSerial::recv() // .ram_text
{
// If RX line is high, then we don't see any start bit
// so interrupt is probably not for us
bool rxState = (bool)GPIO_READ_PIN((GPIO_TypeDef *)_receivePortRegister, (HAL_PinsTypeDef)_receiveBitMask);
if (_inverse_logic ? rxState : !rxState)
{
// Disable further interrupts during reception, this prevents triggering another interrupt
// directly after we return, which can cause problems at higher baudrates.
setRxIntMsk(false); // __always_inline__
// Wait approximately 1/2 of a bit width to "center" the sample
if (_rx_delay_centering > 0)
tunedDelay(_rx_delay_centering); // .ram_text
// Read each of the 8 bits
uint8_t data = 0;
for (uint8_t i=8; i > 0; --i)
{
tunedDelay(_rx_delay_intrabit);
data >>= 1;
if (GPIO_READ_PIN((GPIO_TypeDef *)_receivePortRegister, (HAL_PinsTypeDef)_receiveBitMask))
data |= 0x80;
}
if (_inverse_logic)
data = ~data;
// if buffer full, set the overflow flag and return
uint8_t next = (_receive_buffer_tail + 1) % _SS_MAX_RX_BUFF;
if (next != _receive_buffer_head)
{
// save new data in buffer: tail points to where byte goes
_receive_buffer[_receive_buffer_tail] = data; // save new byte
_receive_buffer_tail = next;
}
else
_buffer_overflow = true;
// skip the stop bit
tunedDelay(_rx_delay_stopbit);
// Re-enable interrupts when we're sure to be inside the stop bit
setRxIntMsk(true);
}
GPIO_IRQ_CLEAR_ALL();
}
uint8_t SoftwareSerial::rx_pin_read()
{
return (uint8_t)GPIO_READ_PIN((GPIO_TypeDef *)_receivePortRegister, (HAL_PinsTypeDef)_receiveBitMask);
}
// Interrupt handling
/* static */
void SoftwareSerial::handle_interrupt() // .ram_text
{
if (active_object)
{
active_object->recv(); // .ram_text
}
}
extern "C" void __attribute__((noinline, section(".ram_text"))) softSerial_interrupt_handler(void)
{
SoftwareSerial::handle_interrupt();
}
//
// Constructor
//
SoftwareSerial::SoftwareSerial(uint8_t receivePin, uint8_t transmitPin, bool inverse_logic /* = false */) :
_rx_delay_centering(0),
_rx_delay_intrabit(0),
_rx_delay_stopbit(0),
_tx_delay(0),
_buffer_overflow(false),
_inverse_logic(inverse_logic)
{
_transmitPin = transmitPin;
_receivePin = receivePin;
}
//
// Destructor
//
SoftwareSerial::~SoftwareSerial()
{
end();
}
void SoftwareSerial::setTX(uint8_t tx)
{
// save pin and port info
_transmitBitMask = (uint16_t)digitalPinToBitMask(tx);
_transmitPortRegister = (uint32_t)digitalPinToPort(tx);
// set state before tx pin initialization to prevent false start bit
if (_inverse_logic)
GPIO_CLEAR_PIN((GPIO_TypeDef *)_transmitPortRegister, (HAL_PinsTypeDef)_transmitBitMask);
else
GPIO_SET_PIN((GPIO_TypeDef *)_transmitPortRegister, (HAL_PinsTypeDef)_transmitBitMask);
// init pin as output
pinMode(tx, OUTPUT);
}
void SoftwareSerial::setRX(uint8_t rx)
{
// save pin, port and gpio_line info
_receiveBitMask = (uint16_t)digitalPinToBitMask(rx);
_receivePortRegister = (uint32_t)digitalPinToPort(rx);
_int_maskLine = digitalPinToGpioIntLine(_receivePin);
// attach interrupt to rx pin if available
attachInterrupt(digitalPinToInterrupt(_receivePin), softSerial_interrupt_handler, _inverse_logic ? RISING : FALLING);
// turn on pull up for rx if logic is not inverse
if (!_inverse_logic)
{
uint8_t pinNumber = PIN_MASK_TO_PIN_NUMBER(_receiveBitMask);
if (((GPIO_TypeDef*)_receivePortRegister) == GPIO_0)
PIN_SET_PAD_CONFIG(PORT_0_PUPD, pinNumber, HAL_GPIO_PULL_UP);
else if (((GPIO_TypeDef*)_receivePortRegister) == GPIO_1)
PIN_SET_PAD_CONFIG(PORT_1_PUPD, pinNumber, HAL_GPIO_PULL_UP);
else if (((GPIO_TypeDef*)_receivePortRegister) == GPIO_2)
PIN_SET_PAD_CONFIG(PORT_2_PUPD, pinNumber, HAL_GPIO_PULL_UP);
}
// turn off int line for while (it turning on in attachInterrupt())
GPIO_IRQ_LINE_DISABLE(_int_maskLine);
}
uint32_t SoftwareSerial::subtract_cap(uint32_t num, uint16_t sub)
{
if (num > sub)
return num - sub;
else
return 1;
}
//
// Public methods
//
void SoftwareSerial::begin(long speed)
{
// delays are empirical values here
_rx_delay_centering = _rx_delay_intrabit = _rx_delay_stopbit = _tx_delay = 0;
// if pins exceeds the total number of pins, return with zero delays - it blocks further library work
if ((_transmitPin >= pinCommonQty()))
{
ErrorMsgHandler("SoftwareSerial.begin(): Tx pin number exceeds the total number of pins");
return;
}
if ((_receivePin >= pinCommonQty()))
{
ErrorMsgHandler("SoftwareSerial.begin(): Rx pin number exceeds the total number of pins");
return;
}
// limit speed
if (speed > MAX_SOFT_SERIAL_SPEED) speed = MAX_SOFT_SERIAL_SPEED;
if (speed < MIN_SOFT_SERIAL_SPEED) speed = MIN_SOFT_SERIAL_SPEED;
// Precalculate the various delays in number of ticks
uint32_t bit_delay = F_CPU / speed;
// init tx
setTX(_transmitPin);
_tx_delay = subtract_cap(bit_delay, 35); // 1 bit delay while transmitting data
// init rx only when we have a valid INT for this pin
if (digitalPinToInterrupt(_receivePin) != NOT_AN_INTERRUPT)
{
// set pin config
setRX(_receivePin);
// We want to have a total delay of 1.5 bit time from start bit. Inside the loop, we already
// wait for 1 bit time, so here we wait for 0.5 bit time
_rx_delay_centering = subtract_cap(bit_delay / 2, 315);
// 1 bit time
_rx_delay_intrabit = subtract_cap(bit_delay, 60);
// This delay aims at 3/4 of a bit time, meaning the end of the delay will be at 1/4th of the stopbit.
// This allows some extra time for ISR cleanup, which makes 115200 baud at 16Mhz work more reliably
_rx_delay_stopbit = subtract_cap(bit_delay * 3 / 4, 142);
}
else
ErrorMsgHandler("SoftwareSerial.begin(): Rx pin does not support interrupts, use different pin");
tunedDelay(_tx_delay); // if we were low this establishes the end
listen();
}
void SoftwareSerial::setRxIntMsk(bool enable)
{
if (enable)
GPIO_IRQ_LINE_ENABLE(_int_maskLine);
else
GPIO_IRQ_LINE_DISABLE(_int_maskLine);
}
void SoftwareSerial::end()
{
stopListening();
}
// function placed in ram. Should not call other function placed in flash
size_t SoftwareSerial::write(uint8_t byte)
{
if (_tx_delay == 0)
return 0;
if (_inverse_logic)
byte = ~byte;
GLOBAL_IRQ_DISABLE(); // turn off interrupts for a clean txmit
// Write the start bit
if (_inverse_logic)
GPIO_SET_PIN((GPIO_TypeDef *)_transmitPortRegister, (HAL_PinsTypeDef)_transmitBitMask);
else
GPIO_CLEAR_PIN((GPIO_TypeDef *)_transmitPortRegister, (HAL_PinsTypeDef)_transmitBitMask);
tunedDelay(_tx_delay); // wait start bit
// Write each of the 8 bits in LSB mode
for (uint8_t i = 8; i > 0; --i)
{
if (byte & 1) // choose bit
GPIO_SET_PIN((GPIO_TypeDef *)_transmitPortRegister, (HAL_PinsTypeDef)_transmitBitMask);
else
GPIO_CLEAR_PIN((GPIO_TypeDef *)_transmitPortRegister, (HAL_PinsTypeDef)_transmitBitMask);
tunedDelay(_tx_delay);
byte >>= 1;
}
// restore pin to natural state - stop bit
if (_inverse_logic)
GPIO_CLEAR_PIN((GPIO_TypeDef *)_transmitPortRegister, (HAL_PinsTypeDef)_transmitBitMask);
else
GPIO_SET_PIN((GPIO_TypeDef *)_transmitPortRegister, (HAL_PinsTypeDef)_transmitBitMask);
// enable interrupts
GLOBAL_IRQ_ENABLE();
tunedDelay(_tx_delay); // wait stop bit
return 1;
}
// Read data from buffer
int SoftwareSerial::read()
{
if (!isListening())
return -1;
// Empty buffer?
if (_receive_buffer_head == _receive_buffer_tail)
return -1;
// Read from "head"
uint8_t data = _receive_buffer[_receive_buffer_head]; // grab next byte
_receive_buffer_head = (_receive_buffer_head + 1) % _SS_MAX_RX_BUFF;
return data;
}
int SoftwareSerial::available()
{
if (!isListening())
return 0;
return ((unsigned int)(_receive_buffer_tail + _SS_MAX_RX_BUFF - _receive_buffer_head)) % _SS_MAX_RX_BUFF;
}
void SoftwareSerial::flush()
{
// There is no tx buffering, simply return
}
int SoftwareSerial::peek()
{
if (!isListening())
return -1;
// Empty buffer?
if (_receive_buffer_head == _receive_buffer_tail)
return -1;
// Read from "head"
return _receive_buffer[_receive_buffer_head];
}