elbear_arduino_bsp/libraries/IRremote/examples/SendDemo/SendDemo.ino
KlassenTS 1c8e06634c v0.5.0
- добавлена поддержка платы ELBEAR ACE-NANO;
- добавлена поддержка плат ELSOMIK OEM и SE;
- добавлена возможность работы в режиме отладки для всех плат, входящих в состав пакета. Доступно для версии ArduinoIDE 2 и выше;
- добавлена поддержка библиотеки FreeRTOS;
- добавлена поддержка библиотеки IRremote;
- добавлена поддержка библиотеки OneWire;
- добавлена поддержка аппаратного I2C0 для плат START-MIK32 и ELSOMIK. Для работы с ним доступен экземпляр класса Wire1;
- добавлена поддержка аппаратного SPI0 для всех плат, входящих в пакет. Для работы с ним доступен экземпляр класса SPI1;
- увеличено быстродействие функций digitalWrite, digitalRead;
- исправлены известные ошибки.
Co-authored-by: KlassenTS <klassen@elron.tech>
Co-committed-by: KlassenTS <klassen@elron.tech>
2025-04-28 07:06:08 +03:00

425 lines
17 KiB
C++

/*
* SendDemo.cpp
*
* Demonstrates sending IR codes in standard format with address and command
*
* This file is part of Arduino-IRremote https://github.com/Arduino-IRremote/Arduino-IRremote.
*
************************************************************************************
* MIT License
*
* Copyright (c) 2020-2023 Armin Joachimsmeyer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
************************************************************************************
*/
#include <Arduino.h>
//#define EXCLUDE_EXOTIC_PROTOCOLS // Saves around 240 bytes program memory if IrSender.write is used
#define SEND_PWM_BY_TIMER // Disable carrier PWM generation in software and use (restricted) hardware PWM.
//#define USE_NO_SEND_PWM // Use no carrier PWM, just simulate an active low receiver signal. Overrides SEND_PWM_BY_TIMER definition
//#define USE_ACTIVE_HIGH_OUTPUT_FOR_SEND_PIN // Simulate an active high receiver signal instead of an active low signal.
//#define NO_LED_FEEDBACK_CODE // Saves 566 bytes program memory
/*
* Helper macro for getting a macro definition as string
*/
#if !defined(STR_HELPER)
#define STR_HELPER(x) #x
#define STR(x) STR_HELPER(x)
#endif
#ifndef IR_SEND_PIN
#define IR_SEND_PIN 3 // P0_0
#endif
#include <IRremote.hpp>
// #undef IR_SEND_PIN // to use tSendPin
#define DELAY_AFTER_SEND 2000
#define DELAY_AFTER_LOOP 5000
void setup() {
Serial.begin(9600);
while (!Serial)
; // Wait for Serial to become available. Is optimized away for some cores.
// Just to know which program is running on my Arduino
Serial.println(F("START " __FILE__ " from " __DATE__ "\r\nUsing library version " VERSION_IRREMOTE));
#if defined(IR_SEND_PIN)
IrSender.begin(); // Start with IR_SEND_PIN as send pin and enable feedback LED at default feedback LED pin
// disableLEDFeedback(); // Disable feedback LED at default feedback LED pin
Serial.println(F("Send IR signals at pin " STR(IR_SEND_PIN)));
#else
// Here the macro IR_SEND_PIN is not defined or undefined above with #undef IR_SEND_PIN
uint8_t tSendPin = 3;
IrSender.begin(tSendPin, ENABLE_LED_FEEDBACK, USE_DEFAULT_FEEDBACK_LED_PIN); // Specify send pin and enable feedback LED at default feedback LED pin
// You can change send pin later with IrSender.setSendPin();
Serial.print(F("Send IR signals at pin "));
Serial.println(tSendPin);
#endif
#if !defined(SEND_PWM_BY_TIMER)
/*
* Print internal software PWM signal generation info
*/
IrSender.enableIROut(38); // Call it with 38 kHz just to initialize the values printed below
Serial.print(F("Send signal mark duration is "));
Serial.print(IrSender.periodOnTimeMicros);
Serial.print(F(" us, pulse narrowing correction is "));
Serial.print(IrSender.getPulseCorrectionNanos());
Serial.print(F(" ns, total period is "));
Serial.print(IrSender.periodTimeMicros);
Serial.println(F(" us"));
#endif
#if defined(LED_BUILTIN) && !defined(NO_LED_FEEDBACK_CODE)
# if defined(FEEDBACK_LED_IS_ACTIVE_LOW)
Serial.print(F("Active low "));
# endif
Serial.print(F("FeedbackLED at pin "));
Serial.println(LED_BUILTIN); // Works also for ESP32: static const uint8_t LED_BUILTIN = 8; #define LED_BUILTIN LED_BUILTIN
#endif
}
/*
* Set up the data to be sent.
* For most protocols, the data is build up with a constant 8 (or 16 byte) address
* and a variable 8 bit command.
* There are exceptions like Sony and Denon, which have 5 bit address.
*/
uint16_t sAddress = 0x0132;
uint8_t sCommand = 0x34;
uint16_t s16BitCommand = 0x5634;
uint8_t sRepeats = 0;
void loop() {
/*
* Print values
*/
Serial.println();
Serial.print(F("address=0x"));
Serial.print(sAddress, HEX);
Serial.print(F(" command=0x"));
Serial.print(sCommand, HEX);
Serial.print(F(" repeats="));
Serial.println(sRepeats);
Serial.println();
Serial.println();
Serial.flush();
Serial.println(F("Send NEC with 8 bit address"));
Serial.flush();
IrSender.sendNEC(sAddress & 0xFF, sCommand, sRepeats);
delay(DELAY_AFTER_SEND); // delay must be greater than 5 ms (RECORD_GAP_MICROS), otherwise the receiver sees it as one long signal
Serial.println(F("Send NEC with 16 bit address"));
Serial.flush();
IrSender.sendNEC(sAddress, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send NEC2 with 16 bit address"));
Serial.flush();
IrSender.sendNEC2(sAddress, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
if (sRepeats == 0) {
/*
* Send constant values only once in this demo
*/
Serial.println(F("Sending NEC Pronto data with 8 bit address 0x80 and command 0x45 and no repeats"));
Serial.flush();
IrSender.sendPronto(F("0000 006D 0022 0000 015E 00AB " /* Pronto header + start bit */
"0017 0015 0017 0015 0017 0017 0015 0017 0017 0015 0017 0015 0017 0015 0017 003F " /* Lower address byte */
"0017 003F 0017 003E 0017 003F 0015 003F 0017 003E 0017 003F 0017 003E 0017 0015 " /* Upper address byte (inverted at 8 bit mode) */
"0017 003E 0017 0015 0017 003F 0017 0015 0017 0015 0017 0015 0017 003F 0017 0015 " /* command byte */
"0019 0013 0019 003C 0017 0015 0017 003F 0017 003E 0017 003F 0017 0015 0017 003E " /* inverted command byte */
"0017 0806"), 0); //stop bit, no repeat possible, because of missing repeat pattern
delay(DELAY_AFTER_SEND);
/*
* !!! The next data occupies 136 bytes RAM !!!
*/
Serial.println(
F("Send NEC sendRaw data with 8 bit address=0xFB04 and command 0x08 and exact timing (16 bit array format)"));
Serial.flush();
const uint16_t irSignal[] = { 9000, 4500/*Start bit*/, 560, 560, 560, 560, 560, 1690, 560,
560/*0010 0x4 of 16 bit address LSB first*/, 560, 560, 560, 560, 560, 560, 560, 560/*0000*/, 560, 1690, 560, 1690,
560, 560, 560, 1690/*1101 0xB*/, 560, 1690, 560, 1690, 560, 1690, 560, 1690/*1111*/, 560, 560, 560, 560, 560, 560,
560, 1690/*0001 0x08 of command LSB first*/, 560, 560, 560, 560, 560, 560, 560, 560/*0000 0x00*/, 560, 1690, 560,
1690, 560, 1690, 560, 560/*1110 Inverted 8 of command*/, 560, 1690, 560, 1690, 560, 1690, 560,
1690/*1111 inverted 0 of command*/, 560 /*stop bit*/}; // Using exact NEC timing
IrSender.sendRaw(irSignal, sizeof(irSignal) / sizeof(irSignal[0]), NEC_KHZ); // Note the approach used to automatically calculate the size of the array.
delay(DELAY_AFTER_SEND);
/*
* With sendNECRaw() you can send 32 bit combined codes
*/
Serial.println(F("Send ONKYO with 16 bit address 0x0102 and 16 bit command 0x0304 with NECRaw(0x03040102)"));
Serial.flush();
IrSender.sendNECRaw(0x03040102, sRepeats);
delay(DELAY_AFTER_SEND);
/*
* With Send sendNECMSB() you can send your old 32 bit codes.
* To convert one into the other, you must reverse the byte positions and then reverse all positions of each byte.
* Use bitreverse32Bit().
* Example:
* 0xCB340102 byte reverse -> 0x020134CB bit reverse-> 40802CD3
*/
Serial.println(F("Send ONKYO with 16 bit address 0x0102 and command 0x34 with old 32 bit format MSB first (0x40802CD3)"));
Serial.flush();
IrSender.sendNECMSB(0x40802CD3, 32, false);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Panasonic 0xB, 0x10 as 48 bit PulseDistance using ProtocolConstants"));
Serial.flush();
IrSender.sendPulseDistanceWidth(&KaseikyoProtocolConstants, 0xA010B02002, 48, NO_REPEATS); // Panasonic is a Kaseikyo variant
delay(DELAY_AFTER_SEND);
/*
* Send 2 Panasonic 48 bit codes as Pulse Distance data, once with LSB and once with MSB first
*/
Serial.println(F("Send Panasonic 0xB, 0x10 as 48 bit PulseDistance"));
Serial.println(F(" LSB first"));
Serial.flush();
IrSender.sendPulseDistanceWidth(38, 3450, 1700, 450, 1250, 450, 400, 0xA010B02002, 48, PROTOCOL_IS_LSB_FIRST,
0, NO_REPEATS);
delay(DELAY_AFTER_SEND);
// The same with MSB first. Use bit reversed raw data of LSB first part
Serial.println(F(" MSB first"));
IrSender.sendPulseDistanceWidth(38, 3450, 1700, 450, 1250, 450, 400, 0x40040D000805, 48, PROTOCOL_IS_MSB_FIRST,
0, NO_REPEATS);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send 72 bit PulseDistance 0x5A AFEDCBA9 87654321 LSB first"));
Serial.flush();
IRRawDataType tRawData[] = { 0xAFEDCBA987654321, 0x5A }; // LSB of tRawData[0] is sent first
IrSender.sendPulseDistanceWidthFromArray(38, 8900, 4450, 550, 1700, 550, 600, &tRawData[0], 72, PROTOCOL_IS_LSB_FIRST, 0, NO_REPEATS);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send 52 bit PulseDistanceWidth 0xDCBA9 87654321 LSB first"));
Serial.flush();
// Real PulseDistanceWidth (constant bit length) does not require a stop bit
IrSender.sendPulseDistanceWidth(38, 300, 600, 600, 300, 300, 600, 0xDCBA987654321, 52, PROTOCOL_IS_LSB_FIRST,
0, 0);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send ASCII 7 bit PulseDistanceWidth LSB first"));
Serial.flush();
// Real PulseDistanceWidth (constant bit length) does theoretically not require a stop bit, but we know the stop bit from serial transmission
IrSender.sendPulseDistanceWidth(38, 6000, 500, 500, 1500, 1500, 500, sCommand, 7, PROTOCOL_IS_LSB_FIRST, 0, 0);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Sony12 as PulseWidth LSB first"));
Serial.flush();
uint32_t tData = (uint32_t) sAddress << 7 | (sCommand & 0x7F);
IrSender.sendPulseDistanceWidth(38, 2400, 600, 1200, 600, 600, 600, tData, SIRCS_12_PROTOCOL, PROTOCOL_IS_LSB_FIRST, 0, 0);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send 32 bit PulseWidth 0x87654321 LSB first"));
Serial.flush();
// Real PulseDistanceWidth (constant bit length) does not require a stop bit
IrSender.sendPulseDistanceWidth(38, 1000, 500, 600, 300, 300, 300, 0x87654321, 32, PROTOCOL_IS_LSB_FIRST, 0, 0);
delay(DELAY_AFTER_SEND);
}
Serial.println(F("Send Onkyo (NEC with 16 bit command)"));
Serial.flush();
IrSender.sendOnkyo(sAddress, s16BitCommand, sRepeats);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Apple"));
Serial.flush();
IrSender.sendApple(sAddress & 0xFF, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Panasonic"));
Serial.flush();
IrSender.sendPanasonic(sAddress & 0xFFF, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Kaseikyo with 0x4711 as Vendor ID"));
Serial.flush();
IrSender.sendKaseikyo(sAddress & 0xFFF, sCommand, sRepeats, 0x4711);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Kaseikyo_Denon variant"));
Serial.flush();
IrSender.sendKaseikyo_Denon(sAddress & 0xFFF, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Denon"));
Serial.flush();
IrSender.sendDenon(sAddress & 0x1F, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Denon/Sharp variant"));
Serial.flush();
IrSender.sendSharp(sAddress & 0x1F, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Sony/SIRCS with 7 command and 5 address bits"));
Serial.flush();
IrSender.sendSony(sAddress & 0x1F, sCommand & 0x7F, sRepeats);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Sony/SIRCS with 7 command and 8 address bits"));
Serial.flush();
IrSender.sendSony(sAddress & 0xFF, sCommand, sRepeats, SIRCS_15_PROTOCOL);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Sony/SIRCS with 7 command and 13 address bits"));
Serial.flush();
IrSender.sendSony(sAddress & 0x1FFF, sCommand & 0x7F, sRepeats, SIRCS_20_PROTOCOL);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Samsung 8 bit command"));
Serial.flush();
IrSender.sendSamsung(sAddress, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Samsung 16 bit command"));
Serial.flush();
IrSender.sendSamsung(sAddress, s16BitCommand, sRepeats);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send Samsung48 16 bit command"));
Serial.flush();
IrSender.sendSamsung48(sAddress, s16BitCommand, sRepeats);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send RC5"));
Serial.flush();
IrSender.sendRC5(sAddress & 0x1F, sCommand & 0x3F, sRepeats, true); // 5 address, 6 command bits
delay(DELAY_AFTER_SEND);
Serial.println(F("Send RC5X with 7.th MSB of command set"));
Serial.flush();
IrSender.sendRC5(sAddress & 0x1F, (sCommand & 0x3F) + 0x40, sRepeats, true); // 5 address, 7 command bits
delay(DELAY_AFTER_SEND);
Serial.println(F("Send RC6"));
Serial.flush();
IrSender.sendRC6(sAddress, sCommand, sRepeats, true);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send RC6A with 14 bit 0x2711 as extra"));
Serial.flush();
IrSender.sendRC6A(sAddress & 0xFF, sCommand, sRepeats, 0x2711, true);
delay(DELAY_AFTER_SEND);
Serial.println(F("Send MagiQuest"));
Serial.flush();
IrSender.sendMagiQuest(0x6BCD0000 | (uint32_t) sAddress, s16BitCommand); // we have 31 bit address
delay(DELAY_AFTER_SEND);
/*
* Next example how to use the IrSender.write function
*/
IRData IRSendData;
// prepare data
IRSendData.address = sAddress;
IRSendData.command = sCommand;
IRSendData.flags = IRDATA_FLAGS_EMPTY;
Serial.println(F("Send next protocols with IrSender.write"));
Serial.flush();
IRSendData.protocol = JVC; // switch protocol
Serial.print(F("Send "));
Serial.println(getProtocolString(IRSendData.protocol));
Serial.flush();
IrSender.write(&IRSendData, sRepeats);
delay(DELAY_AFTER_SEND);
IRSendData.command = s16BitCommand; // LG support more than 8 bit command
IRSendData.protocol = SAMSUNG;
Serial.print(F("Send "));
Serial.println(getProtocolString(IRSendData.protocol));
Serial.flush();
IrSender.write(&IRSendData, sRepeats);
delay(DELAY_AFTER_SEND);
IRSendData.protocol = LG;
Serial.print(F("Send "));
Serial.println(getProtocolString(IRSendData.protocol));
Serial.flush();
IrSender.write(&IRSendData, sRepeats);
delay(DELAY_AFTER_SEND);
IRSendData.protocol = BOSEWAVE;
Serial.println(F("Send Bosewave with no address and 8 command bits"));
Serial.flush();
IrSender.write(&IRSendData, sRepeats);
delay(DELAY_AFTER_SEND);
IRSendData.protocol = FAST;
Serial.print(F("Send "));
Serial.println(getProtocolString(IRSendData.protocol));
Serial.flush();
IrSender.write(&IRSendData, sRepeats);
delay(DELAY_AFTER_SEND);
/*
* LEGO is difficult to receive because of its short marks and spaces
*/
Serial.println(F("Send Lego with 2 channel and with 4 command bits"));
Serial.flush();
IrSender.sendLegoPowerFunctions(sAddress, sCommand, LEGO_MODE_COMBO, true);
delay(DELAY_AFTER_SEND);
/*
* Force buffer overflow
*/
Serial.println(F("Force buffer overflow by sending 700 marks and spaces"));
for (unsigned int i = 0; i < 350; ++i) {
// 400 + 400 should be received as 8/8 and sometimes as 9/7 or 7/9 if compensation by MARK_EXCESS_MICROS is optimal.
// 210 + 540 = 750 should be received as 5/10 or 4/11 if compensation by MARK_EXCESS_MICROS is optimal.
IrSender.mark(210); // 8 pulses at 38 kHz
IrSender.space(540); // to fill up to 750 us
}
delay(DELAY_AFTER_SEND);
/*
* Increment values
* Also increment address just for demonstration, which normally makes no sense
*/
sAddress += 0x0101;
sCommand += 0x11;
s16BitCommand += 0x1111;
sRepeats++;
// clip repeats at 4
if (sRepeats > 4) {
sRepeats = 4;
}
delay(DELAY_AFTER_LOOP); // additional delay at the end of each loop
}