Добавлена библиотека IRremote #10

Merged
klassents merged 75 commits from dev into v0.5.0 2025-01-25 06:52:11 +03:00
Showing only changes of commit 8a857b5852 - Show all commits

View File

@ -29,47 +29,40 @@
*
************************************************************************************
*/
#include <Arduino.h>
#include "PinDefinitionsAndMore.h" // Define macros for input and output pin etc.
#if !defined(ARDUINO_ESP32C3_DEV) // This is due to a bug in RISC-V compiler, which requires unused function sections :-(.
#define DISABLE_CODE_FOR_RECEIVER // Disables static receiver code like receive timer ISR handler and static IRReceiver and irparams data. Saves 450 bytes program memory and 269 bytes RAM if receiving functions are not required.
#endif
//#define EXCLUDE_EXOTIC_PROTOCOLS // Saves around 240 bytes program memory if IrSender.write is used
//#define SEND_PWM_BY_TIMER // Disable carrier PWM generation in software and use (restricted) hardware PWM.
#define SEND_PWM_BY_TIMER // Disable carrier PWM generation in software and use (restricted) hardware PWM.
//#define USE_NO_SEND_PWM // Use no carrier PWM, just simulate an active low receiver signal. Overrides SEND_PWM_BY_TIMER definition
//#define USE_ACTIVE_HIGH_OUTPUT_FOR_SEND_PIN // Simulate an active high receiver signal instead of an active low signal.
//#define USE_OPEN_DRAIN_OUTPUT_FOR_SEND_PIN // Use or simulate open drain output mode at send pin. Attention, active state of open drain is LOW, so connect the send LED between positive supply and send pin!
//#define NO_LED_FEEDBACK_CODE // Saves 566 bytes program memory
//#undef IR_SEND_PIN // enable this, if you need to set send pin programmatically using uint8_t tSendPin below
/*
* Helper macro for getting a macro definition as string
*/
#if !defined(STR_HELPER)
#define STR_HELPER(x) #x
#define STR(x) STR_HELPER(x)
#endif
#include <IRremote.hpp>
#define DELAY_AFTER_SEND 2000
#define DELAY_AFTER_LOOP 5000
void setup() {
Serial.begin(115200);
Serial.begin(9600);
while (!Serial)
; // Wait for Serial to become available. Is optimized away for some cores.
#if defined(__AVR_ATmega32U4__) || defined(SERIAL_PORT_USBVIRTUAL) || defined(SERIAL_USB) /*stm32duino*/|| defined(USBCON) /*STM32_stm32*/ \
|| defined(SERIALUSB_PID) || defined(ARDUINO_ARCH_RP2040) || defined(ARDUINO_attiny3217)
delay(4000); // To be able to connect Serial monitor after reset or power up and before first print out. Do not wait for an attached Serial Monitor!
#endif
// Just to know which program is running on my Arduino
Serial.println(F("START " __FILE__ " from " __DATE__ "\r\nUsing library version " VERSION_IRREMOTE));
#if defined(IR_SEND_PIN)
IrSender.begin(); // Start with IR_SEND_PIN -which is defined in PinDefinitionsAndMore.h- as send pin and enable feedback LED at default feedback LED pin
IrSender.begin(); // Start with IR_SEND_PIN as send pin and enable feedback LED at default feedback LED pin
// disableLEDFeedback(); // Disable feedback LED at default feedback LED pin
# if defined(IR_SEND_PIN_STRING)
Serial.println(F("Send IR signals at pin " IR_SEND_PIN_STRING));
# else
Serial.println(F("Send IR signals at pin " STR(IR_SEND_PIN)));
# endif
#else
// Here the macro IR_SEND_PIN is not defined or undefined above with #undef IR_SEND_PIN
uint8_t tSendPin = 3;
@ -135,331 +128,293 @@ void loop() {
IrSender.sendNEC(sAddress & 0xFF, sCommand, sRepeats);
delay(DELAY_AFTER_SEND); // delay must be greater than 5 ms (RECORD_GAP_MICROS), otherwise the receiver sees it as one long signal
Serial.println(F("Send NEC with 16 bit address"));
Serial.flush();
IrSender.sendNEC(sAddress, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send NEC with 16 bit address"));
// Serial.flush();
// IrSender.sendNEC(sAddress, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send NEC2 with 16 bit address"));
Serial.flush();
IrSender.sendNEC2(sAddress, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send NEC2 with 16 bit address"));
// Serial.flush();
// IrSender.sendNEC2(sAddress, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
if (sRepeats == 0) {
#if FLASHEND >= 0x3FFF && ((defined(RAMEND) && RAMEND > 0x6FF) || (defined(RAMSIZE) && RAMSIZE > 0x6FF)) // For 16k flash or more, like ATtiny1604. Code does not fit in program memory of ATtiny85 etc.
/*
* Send constant values only once in this demo
*/
Serial.println(F("Sending NEC Pronto data with 8 bit address 0x80 and command 0x45 and no repeats"));
Serial.flush();
IrSender.sendPronto(F("0000 006D 0022 0000 015E 00AB " /* Pronto header + start bit */
"0017 0015 0017 0015 0017 0017 0015 0017 0017 0015 0017 0015 0017 0015 0017 003F " /* Lower address byte */
"0017 003F 0017 003E 0017 003F 0015 003F 0017 003E 0017 003F 0017 003E 0017 0015 " /* Upper address byte (inverted at 8 bit mode) */
"0017 003E 0017 0015 0017 003F 0017 0015 0017 0015 0017 0015 0017 003F 0017 0015 " /* command byte */
"0019 0013 0019 003C 0017 0015 0017 003F 0017 003E 0017 003F 0017 0015 0017 003E " /* inverted command byte */
"0017 0806"), 0); //stop bit, no repeat possible, because of missing repeat pattern
delay(DELAY_AFTER_SEND);
// if (sRepeats == 0) {
// /*
// * Send constant values only once in this demo
// */
// Serial.println(F("Sending NEC Pronto data with 8 bit address 0x80 and command 0x45 and no repeats"));
// Serial.flush();
// IrSender.sendPronto(F("0000 006D 0022 0000 015E 00AB " /* Pronto header + start bit */
// "0017 0015 0017 0015 0017 0017 0015 0017 0017 0015 0017 0015 0017 0015 0017 003F " /* Lower address byte */
// "0017 003F 0017 003E 0017 003F 0015 003F 0017 003E 0017 003F 0017 003E 0017 0015 " /* Upper address byte (inverted at 8 bit mode) */
// "0017 003E 0017 0015 0017 003F 0017 0015 0017 0015 0017 0015 0017 003F 0017 0015 " /* command byte */
// "0019 0013 0019 003C 0017 0015 0017 003F 0017 003E 0017 003F 0017 0015 0017 003E " /* inverted command byte */
// "0017 0806"), 0); //stop bit, no repeat possible, because of missing repeat pattern
// delay(DELAY_AFTER_SEND);
/*
* !!! The next data occupies 136 bytes RAM !!!
*/
Serial.println(
F("Send NEC sendRaw data with 8 bit address=0xFB04 and command 0x08 and exact timing (16 bit array format)"));
Serial.flush();
const uint16_t irSignal[] = { 9000, 4500/*Start bit*/, 560, 560, 560, 560, 560, 1690, 560,
560/*0010 0x4 of 16 bit address LSB first*/, 560, 560, 560, 560, 560, 560, 560, 560/*0000*/, 560, 1690, 560, 1690,
560, 560, 560, 1690/*1101 0xB*/, 560, 1690, 560, 1690, 560, 1690, 560, 1690/*1111*/, 560, 560, 560, 560, 560, 560,
560, 1690/*0001 0x08 of command LSB first*/, 560, 560, 560, 560, 560, 560, 560, 560/*0000 0x00*/, 560, 1690, 560,
1690, 560, 1690, 560, 560/*1110 Inverted 8 of command*/, 560, 1690, 560, 1690, 560, 1690, 560,
1690/*1111 inverted 0 of command*/, 560 /*stop bit*/}; // Using exact NEC timing
IrSender.sendRaw(irSignal, sizeof(irSignal) / sizeof(irSignal[0]), NEC_KHZ); // Note the approach used to automatically calculate the size of the array.
delay(DELAY_AFTER_SEND);
// /*
// * !!! The next data occupies 136 bytes RAM !!!
// */
// Serial.println(
// F("Send NEC sendRaw data with 8 bit address=0xFB04 and command 0x08 and exact timing (16 bit array format)"));
// Serial.flush();
// const uint16_t irSignal[] = { 9000, 4500/*Start bit*/, 560, 560, 560, 560, 560, 1690, 560,
// 560/*0010 0x4 of 16 bit address LSB first*/, 560, 560, 560, 560, 560, 560, 560, 560/*0000*/, 560, 1690, 560, 1690,
// 560, 560, 560, 1690/*1101 0xB*/, 560, 1690, 560, 1690, 560, 1690, 560, 1690/*1111*/, 560, 560, 560, 560, 560, 560,
// 560, 1690/*0001 0x08 of command LSB first*/, 560, 560, 560, 560, 560, 560, 560, 560/*0000 0x00*/, 560, 1690, 560,
// 1690, 560, 1690, 560, 560/*1110 Inverted 8 of command*/, 560, 1690, 560, 1690, 560, 1690, 560,
// 1690/*1111 inverted 0 of command*/, 560 /*stop bit*/}; // Using exact NEC timing
// IrSender.sendRaw(irSignal, sizeof(irSignal) / sizeof(irSignal[0]), NEC_KHZ); // Note the approach used to automatically calculate the size of the array.
// delay(DELAY_AFTER_SEND);
/*
* With sendNECRaw() you can send 32 bit combined codes
*/
Serial.println(F("Send ONKYO with 16 bit address 0x0102 and 16 bit command 0x0304 with NECRaw(0x03040102)"));
Serial.flush();
IrSender.sendNECRaw(0x03040102, sRepeats);
delay(DELAY_AFTER_SEND);
// /*
// * With sendNECRaw() you can send 32 bit combined codes
// */
// Serial.println(F("Send ONKYO with 16 bit address 0x0102 and 16 bit command 0x0304 with NECRaw(0x03040102)"));
// Serial.flush();
// IrSender.sendNECRaw(0x03040102, sRepeats);
// delay(DELAY_AFTER_SEND);
/*
* With Send sendNECMSB() you can send your old 32 bit codes.
* To convert one into the other, you must reverse the byte positions and then reverse all positions of each byte.
* Use bitreverse32Bit().
* Example:
* 0xCB340102 byte reverse -> 0x020134CB bit reverse-> 40802CD3
*/
Serial.println(F("Send ONKYO with 16 bit address 0x0102 and command 0x34 with old 32 bit format MSB first (0x40802CD3)"));
Serial.flush();
IrSender.sendNECMSB(0x40802CD3, 32, false);
delay(DELAY_AFTER_SEND);
#endif
// /*
// * With Send sendNECMSB() you can send your old 32 bit codes.
// * To convert one into the other, you must reverse the byte positions and then reverse all positions of each byte.
// * Use bitreverse32Bit().
// * Example:
// * 0xCB340102 byte reverse -> 0x020134CB bit reverse-> 40802CD3
// */
// Serial.println(F("Send ONKYO with 16 bit address 0x0102 and command 0x34 with old 32 bit format MSB first (0x40802CD3)"));
// Serial.flush();
// IrSender.sendNECMSB(0x40802CD3, 32, false);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Panasonic 0xB, 0x10 as 48 bit PulseDistance using ProtocolConstants"));
Serial.flush();
#if __INT_WIDTH__ < 32
IRRawDataType tRawData[] = { 0xB02002, 0xA010 }; // LSB of tRawData[0] is sent first
IrSender.sendPulseDistanceWidthFromArray(&KaseikyoProtocolConstants, &tRawData[0], 48, NO_REPEATS); // Panasonic is a Kaseikyo variant
#else
IrSender.sendPulseDistanceWidth(&KaseikyoProtocolConstants, 0xA010B02002, 48, NO_REPEATS); // Panasonic is a Kaseikyo variant
#endif
// Serial.println(F("Send Panasonic 0xB, 0x10 as 48 bit PulseDistance using ProtocolConstants"));
// Serial.flush();
delay(DELAY_AFTER_SEND);
// IrSender.sendPulseDistanceWidth(&KaseikyoProtocolConstants, 0xA010B02002, 48, NO_REPEATS); // Panasonic is a Kaseikyo variant
/*
* Send 2 Panasonic 48 bit codes as Pulse Distance data, once with LSB and once with MSB first
*/
Serial.println(F("Send Panasonic 0xB, 0x10 as 48 bit PulseDistance"));
Serial.println(F(" LSB first"));
Serial.flush();
#if __INT_WIDTH__ < 32
IrSender.sendPulseDistanceWidthFromArray(38, 3450, 1700, 450, 1250, 450, 400, &tRawData[0], 48,
PROTOCOL_IS_LSB_FIRST, 0, NO_REPEATS);
#else
IrSender.sendPulseDistanceWidth(38, 3450, 1700, 450, 1250, 450, 400, 0xA010B02002, 48, PROTOCOL_IS_LSB_FIRST,
0, NO_REPEATS);
#endif
delay(DELAY_AFTER_SEND);
// delay(DELAY_AFTER_SEND);
// The same with MSB first. Use bit reversed raw data of LSB first part
Serial.println(F(" MSB first"));
#if __INT_WIDTH__ < 32
tRawData[0] = 0x40040D00; // MSB of tRawData[0] is sent first
tRawData[1] = 0x805;
IrSender.sendPulseDistanceWidthFromArray(38, 3450, 1700, 450, 1250, 450, 400, &tRawData[0], 48,
PROTOCOL_IS_MSB_FIRST, 0, NO_REPEATS);
#else
IrSender.sendPulseDistanceWidth(38, 3450, 1700, 450, 1250, 450, 400, 0x40040D000805, 48, PROTOCOL_IS_MSB_FIRST,
0, NO_REPEATS);
#endif
delay(DELAY_AFTER_SEND);
// /*
// * Send 2 Panasonic 48 bit codes as Pulse Distance data, once with LSB and once with MSB first
// */
// Serial.println(F("Send Panasonic 0xB, 0x10 as 48 bit PulseDistance"));
// Serial.println(F(" LSB first"));
// Serial.flush();
Serial.println(F("Send 72 bit PulseDistance 0x5A AFEDCBA9 87654321 LSB first"));
Serial.flush();
# if __INT_WIDTH__ < 32
tRawData[0] = 0x87654321; // LSB of tRawData[0] is sent first
tRawData[1] = 0xAFEDCBA9;
tRawData[2] = 0x5A;
IrSender.sendPulseDistanceWidthFromArray(38, 8900, 4450, 550, 1700, 550, 600, &tRawData[0], 72, PROTOCOL_IS_LSB_FIRST, 0,
NO_REPEATS);
# else
IRRawDataType tRawData[] = { 0xAFEDCBA987654321, 0x5A }; // LSB of tRawData[0] is sent first
IrSender.sendPulseDistanceWidthFromArray(38, 8900, 4450, 550, 1700, 550, 600, &tRawData[0], 72, PROTOCOL_IS_LSB_FIRST, 0, NO_REPEATS);
# endif
delay(DELAY_AFTER_SEND);
// IrSender.sendPulseDistanceWidth(38, 3450, 1700, 450, 1250, 450, 400, 0xA010B02002, 48, PROTOCOL_IS_LSB_FIRST,
// 0, NO_REPEATS);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send 52 bit PulseDistanceWidth 0xDCBA9 87654321 LSB first"));
Serial.flush();
// Real PulseDistanceWidth (constant bit length) does not require a stop bit
#if __INT_WIDTH__ < 32
IrSender.sendPulseDistanceWidthFromArray(38, 300, 600, 600, 300, 300, 600, &tRawData[0], 52,
PROTOCOL_IS_LSB_FIRST, 0, 0);
#else
IrSender.sendPulseDistanceWidth(38, 300, 600, 600, 300, 300, 600, 0xDCBA987654321, 52, PROTOCOL_IS_LSB_FIRST,
0, 0);
#endif
delay(DELAY_AFTER_SEND);
// // The same with MSB first. Use bit reversed raw data of LSB first part
// Serial.println(F(" MSB first"));
// IrSender.sendPulseDistanceWidth(38, 3450, 1700, 450, 1250, 450, 400, 0x40040D000805, 48, PROTOCOL_IS_MSB_FIRST,
// 0, NO_REPEATS);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send ASCII 7 bit PulseDistanceWidth LSB first"));
Serial.flush();
// Real PulseDistanceWidth (constant bit length) does theoretically not require a stop bit, but we know the stop bit from serial transmission
IrSender.sendPulseDistanceWidth(38, 6000, 500, 500, 1500, 1500, 500, sCommand, 7, PROTOCOL_IS_LSB_FIRST, 0, 0);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send 72 bit PulseDistance 0x5A AFEDCBA9 87654321 LSB first"));
// Serial.flush();
// IRRawDataType tRawData[] = { 0xAFEDCBA987654321, 0x5A }; // LSB of tRawData[0] is sent first
// IrSender.sendPulseDistanceWidthFromArray(38, 8900, 4450, 550, 1700, 550, 600, &tRawData[0], 72, PROTOCOL_IS_LSB_FIRST, 0, NO_REPEATS);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Sony12 as PulseWidth LSB first"));
Serial.flush();
uint32_t tData = (uint32_t) sAddress << 7 | (sCommand & 0x7F);
IrSender.sendPulseDistanceWidth(38, 2400, 600, 1200, 600, 600, 600, tData, SIRCS_12_PROTOCOL, PROTOCOL_IS_LSB_FIRST, 0, 0);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send 52 bit PulseDistanceWidth 0xDCBA9 87654321 LSB first"));
// Serial.flush();
// // Real PulseDistanceWidth (constant bit length) does not require a stop bit
// IrSender.sendPulseDistanceWidth(38, 300, 600, 600, 300, 300, 600, 0xDCBA987654321, 52, PROTOCOL_IS_LSB_FIRST,
// 0, 0);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send 32 bit PulseWidth 0x87654321 LSB first"));
Serial.flush();
// Real PulseDistanceWidth (constant bit length) does not require a stop bit
IrSender.sendPulseDistanceWidth(38, 1000, 500, 600, 300, 300, 300, 0x87654321, 32, PROTOCOL_IS_LSB_FIRST, 0, 0);
delay(DELAY_AFTER_SEND);
}
// Serial.println(F("Send ASCII 7 bit PulseDistanceWidth LSB first"));
// Serial.flush();
// // Real PulseDistanceWidth (constant bit length) does theoretically not require a stop bit, but we know the stop bit from serial transmission
// IrSender.sendPulseDistanceWidth(38, 6000, 500, 500, 1500, 1500, 500, sCommand, 7, PROTOCOL_IS_LSB_FIRST, 0, 0);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Onkyo (NEC with 16 bit command)"));
Serial.flush();
IrSender.sendOnkyo(sAddress, s16BitCommand, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Sony12 as PulseWidth LSB first"));
// Serial.flush();
// uint32_t tData = (uint32_t) sAddress << 7 | (sCommand & 0x7F);
// IrSender.sendPulseDistanceWidth(38, 2400, 600, 1200, 600, 600, 600, tData, SIRCS_12_PROTOCOL, PROTOCOL_IS_LSB_FIRST, 0, 0);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Apple"));
Serial.flush();
IrSender.sendApple(sAddress & 0xFF, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send 32 bit PulseWidth 0x87654321 LSB first"));
// Serial.flush();
// // Real PulseDistanceWidth (constant bit length) does not require a stop bit
// IrSender.sendPulseDistanceWidth(38, 1000, 500, 600, 300, 300, 300, 0x87654321, 32, PROTOCOL_IS_LSB_FIRST, 0, 0);
// delay(DELAY_AFTER_SEND);
// }
Serial.println(F("Send Panasonic"));
Serial.flush();
IrSender.sendPanasonic(sAddress & 0xFFF, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Onkyo (NEC with 16 bit command)"));
// Serial.flush();
// IrSender.sendOnkyo(sAddress, s16BitCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Kaseikyo with 0x4711 as Vendor ID"));
Serial.flush();
IrSender.sendKaseikyo(sAddress & 0xFFF, sCommand, sRepeats, 0x4711);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Apple"));
// Serial.flush();
// IrSender.sendApple(sAddress & 0xFF, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Kaseikyo_Denon variant"));
Serial.flush();
IrSender.sendKaseikyo_Denon(sAddress & 0xFFF, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Panasonic"));
// Serial.flush();
// IrSender.sendPanasonic(sAddress & 0xFFF, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Denon"));
Serial.flush();
IrSender.sendDenon(sAddress & 0x1F, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Kaseikyo with 0x4711 as Vendor ID"));
// Serial.flush();
// IrSender.sendKaseikyo(sAddress & 0xFFF, sCommand, sRepeats, 0x4711);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Denon/Sharp variant"));
Serial.flush();
IrSender.sendSharp(sAddress & 0x1F, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Kaseikyo_Denon variant"));
// Serial.flush();
// IrSender.sendKaseikyo_Denon(sAddress & 0xFFF, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Sony/SIRCS with 7 command and 5 address bits"));
Serial.flush();
IrSender.sendSony(sAddress & 0x1F, sCommand & 0x7F, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Denon"));
// Serial.flush();
// IrSender.sendDenon(sAddress & 0x1F, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Sony/SIRCS with 7 command and 8 address bits"));
Serial.flush();
IrSender.sendSony(sAddress & 0xFF, sCommand, sRepeats, SIRCS_15_PROTOCOL);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Denon/Sharp variant"));
// Serial.flush();
// IrSender.sendSharp(sAddress & 0x1F, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Sony/SIRCS with 7 command and 13 address bits"));
Serial.flush();
IrSender.sendSony(sAddress & 0x1FFF, sCommand & 0x7F, sRepeats, SIRCS_20_PROTOCOL);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Sony/SIRCS with 7 command and 5 address bits"));
// Serial.flush();
// IrSender.sendSony(sAddress & 0x1F, sCommand & 0x7F, sRepeats);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Samsung 8 bit command"));
Serial.flush();
IrSender.sendSamsung(sAddress, sCommand, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Sony/SIRCS with 7 command and 8 address bits"));
// Serial.flush();
// IrSender.sendSony(sAddress & 0xFF, sCommand, sRepeats, SIRCS_15_PROTOCOL);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Samsung 16 bit command"));
Serial.flush();
IrSender.sendSamsung(sAddress, s16BitCommand, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Sony/SIRCS with 7 command and 13 address bits"));
// Serial.flush();
// IrSender.sendSony(sAddress & 0x1FFF, sCommand & 0x7F, sRepeats, SIRCS_20_PROTOCOL);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send Samsung48 16 bit command"));
Serial.flush();
IrSender.sendSamsung48(sAddress, s16BitCommand, sRepeats);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Samsung 8 bit command"));
// Serial.flush();
// IrSender.sendSamsung(sAddress, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send RC5"));
Serial.flush();
IrSender.sendRC5(sAddress & 0x1F, sCommand & 0x3F, sRepeats, true); // 5 address, 6 command bits
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Samsung 16 bit command"));
// Serial.flush();
// IrSender.sendSamsung(sAddress, s16BitCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send RC5X with 7.th MSB of command set"));
Serial.flush();
IrSender.sendRC5(sAddress & 0x1F, (sCommand & 0x3F) + 0x40, sRepeats, true); // 5 address, 7 command bits
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send Samsung48 16 bit command"));
// Serial.flush();
// IrSender.sendSamsung48(sAddress, s16BitCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send RC6"));
Serial.flush();
IrSender.sendRC6(sAddress, sCommand, sRepeats, true);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send RC5"));
// Serial.flush();
// IrSender.sendRC5(sAddress & 0x1F, sCommand & 0x3F, sRepeats, true); // 5 address, 6 command bits
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send RC6A with 14 bit 0x2711 as extra"));
Serial.flush();
IrSender.sendRC6A(sAddress & 0xFF, sCommand, sRepeats, 0x2711, true);
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send RC5X with 7.th MSB of command set"));
// Serial.flush();
// IrSender.sendRC5(sAddress & 0x1F, (sCommand & 0x3F) + 0x40, sRepeats, true); // 5 address, 7 command bits
// delay(DELAY_AFTER_SEND);
#if FLASHEND >= 0x3FFF && ((defined(RAMEND) && RAMEND > 0x4FF) || (defined(RAMSIZE) && RAMSIZE > 0x4FF)) // For 16k flash or more, like ATtiny1604. Code does not fit in program memory of ATtiny85 etc.
// Serial.println(F("Send RC6"));
// Serial.flush();
// IrSender.sendRC6(sAddress, sCommand, sRepeats, true);
// delay(DELAY_AFTER_SEND);
Serial.println(F("Send MagiQuest"));
Serial.flush();
IrSender.sendMagiQuest(0x6BCD0000 | (uint32_t) sAddress, s16BitCommand); // we have 31 bit address
delay(DELAY_AFTER_SEND);
// Serial.println(F("Send RC6A with 14 bit 0x2711 as extra"));
// Serial.flush();
// IrSender.sendRC6A(sAddress & 0xFF, sCommand, sRepeats, 0x2711, true);
// delay(DELAY_AFTER_SEND);
// Bang&Olufsen must be sent with 455 kHz
// Serial.println(F("Send Bang&Olufsen"));
// Serial.flush();
// IrSender.sendBangOlufsen(sAddress, sCommand, sRepeats);
// delay(DELAY_AFTER_SEND);
// Serial.println(F("Send MagiQuest"));
// Serial.flush();
// IrSender.sendMagiQuest(0x6BCD0000 | (uint32_t) sAddress, s16BitCommand); // we have 31 bit address
// delay(DELAY_AFTER_SEND);
/*
* Next example how to use the IrSender.write function
*/
IRData IRSendData;
// prepare data
IRSendData.address = sAddress;
IRSendData.command = sCommand;
IRSendData.flags = IRDATA_FLAGS_EMPTY;
// /*
// * Next example how to use the IrSender.write function
// */
// IRData IRSendData;
// // prepare data
// IRSendData.address = sAddress;
// IRSendData.command = sCommand;
// IRSendData.flags = IRDATA_FLAGS_EMPTY;
Serial.println(F("Send next protocols with IrSender.write"));
Serial.flush();
// Serial.println(F("Send next protocols with IrSender.write"));
// Serial.flush();
IRSendData.protocol = JVC; // switch protocol
Serial.print(F("Send "));
Serial.println(getProtocolString(IRSendData.protocol));
Serial.flush();
IrSender.write(&IRSendData, sRepeats);
delay(DELAY_AFTER_SEND);
// IRSendData.protocol = JVC; // switch protocol
// Serial.print(F("Send "));
// Serial.println(getProtocolString(IRSendData.protocol));
// Serial.flush();
// IrSender.write(&IRSendData, sRepeats);
// delay(DELAY_AFTER_SEND);
IRSendData.command = s16BitCommand; // LG support more than 8 bit command
// IRSendData.command = s16BitCommand; // LG support more than 8 bit command
IRSendData.protocol = SAMSUNG;
Serial.print(F("Send "));
Serial.println(getProtocolString(IRSendData.protocol));
Serial.flush();
IrSender.write(&IRSendData, sRepeats);
delay(DELAY_AFTER_SEND);
// IRSendData.protocol = SAMSUNG;
// Serial.print(F("Send "));
// Serial.println(getProtocolString(IRSendData.protocol));
// Serial.flush();
// IrSender.write(&IRSendData, sRepeats);
// delay(DELAY_AFTER_SEND);
IRSendData.protocol = LG;
Serial.print(F("Send "));
Serial.println(getProtocolString(IRSendData.protocol));
Serial.flush();
IrSender.write(&IRSendData, sRepeats);
delay(DELAY_AFTER_SEND);
// IRSendData.protocol = LG;
// Serial.print(F("Send "));
// Serial.println(getProtocolString(IRSendData.protocol));
// Serial.flush();
// IrSender.write(&IRSendData, sRepeats);
// delay(DELAY_AFTER_SEND);
IRSendData.protocol = BOSEWAVE;
Serial.println(F("Send Bosewave with no address and 8 command bits"));
Serial.flush();
IrSender.write(&IRSendData, sRepeats);
delay(DELAY_AFTER_SEND);
// IRSendData.protocol = BOSEWAVE;
// Serial.println(F("Send Bosewave with no address and 8 command bits"));
// Serial.flush();
// IrSender.write(&IRSendData, sRepeats);
// delay(DELAY_AFTER_SEND);
IRSendData.protocol = FAST;
Serial.print(F("Send "));
Serial.println(getProtocolString(IRSendData.protocol));
Serial.flush();
IrSender.write(&IRSendData, sRepeats);
delay(DELAY_AFTER_SEND);
// IRSendData.protocol = FAST;
// Serial.print(F("Send "));
// Serial.println(getProtocolString(IRSendData.protocol));
// Serial.flush();
// IrSender.write(&IRSendData, sRepeats);
// delay(DELAY_AFTER_SEND);
/*
* LEGO is difficult to receive because of its short marks and spaces
*/
Serial.println(F("Send Lego with 2 channel and with 4 command bits"));
Serial.flush();
IrSender.sendLegoPowerFunctions(sAddress, sCommand, LEGO_MODE_COMBO, true);
delay(DELAY_AFTER_SEND);
// /*
// * LEGO is difficult to receive because of its short marks and spaces
// */
// Serial.println(F("Send Lego with 2 channel and with 4 command bits"));
// Serial.flush();
// IrSender.sendLegoPowerFunctions(sAddress, sCommand, LEGO_MODE_COMBO, true);
// delay(DELAY_AFTER_SEND);
#endif // FLASHEND
/*
* Force buffer overflow
*/
Serial.println(F("Force buffer overflow by sending 700 marks and spaces"));
for (unsigned int i = 0; i < 350; ++i) {
// 400 + 400 should be received as 8/8 and sometimes as 9/7 or 7/9 if compensation by MARK_EXCESS_MICROS is optimal.
// 210 + 540 = 750 should be received as 5/10 or 4/11 if compensation by MARK_EXCESS_MICROS is optimal.
IrSender.mark(210); // 8 pulses at 38 kHz
IrSender.space(540); // to fill up to 750 us
}
delay(DELAY_AFTER_SEND);
/*
* Increment values
* Also increment address just for demonstration, which normally makes no sense
*/
sAddress += 0x0101;
sCommand += 0x11;
s16BitCommand += 0x1111;
sRepeats++;
// clip repeats at 4
if (sRepeats > 4) {
sRepeats = 4;
}
// /*
// * Force buffer overflow
// */
// Serial.println(F("Force buffer overflow by sending 700 marks and spaces"));
// for (unsigned int i = 0; i < 350; ++i) {
// // 400 + 400 should be received as 8/8 and sometimes as 9/7 or 7/9 if compensation by MARK_EXCESS_MICROS is optimal.
// // 210 + 540 = 750 should be received as 5/10 or 4/11 if compensation by MARK_EXCESS_MICROS is optimal.
// IrSender.mark(210); // 8 pulses at 38 kHz
// IrSender.space(540); // to fill up to 750 us
// }
// delay(DELAY_AFTER_SEND);
delay(DELAY_AFTER_LOOP); // additional delay at the end of each loop
// /*
// * Increment values
// * Also increment address just for demonstration, which normally makes no sense
// */
// sAddress += 0x0101;
// sCommand += 0x11;
// s16BitCommand += 0x1111;
// sRepeats++;
// // clip repeats at 4
// if (sRepeats > 4) {
// sRepeats = 4;
// }
//delay(DELAY_AFTER_LOOP); // additional delay at the end of each loop
}